School of Geography and Earth Sciences, 1280 Main Street West, McMaster University, Hamilton, Ontario L8S4K1, Canada.
Int J Health Geogr. 2009 Nov 30;8:69. doi: 10.1186/1476-072X-8-69.
Geographic public health surveillance is concerned with describing and disseminating geographic information about disease and other measures of health to policy makers and the public. While methodological developments in the geographical analysis of disease are numerous, few have been integrated into a framework that also considers the effects of case ascertainment bias on the effectiveness of chronic disease surveillance.
We present a framework for the geographic surveillance of chronic disease that integrates methodological developments in the spatial statistical analysis and case ascertainment. The framework uses an hierarchical approach to organize and model health information derived from an administrative health data system, and importantly, supports the detection and analysis of case ascertainment bias in geographic data. We test the framework on asthmatic data from Alberta, Canada. We observe high prevalence in south-western Alberta, particularly among Aboriginal females. We also observe that persons likely mistaken for asthmatics tend to be distributed in a pattern similar to asthmatics, suggesting that there may be an underlying social vulnerability to a variety of respiratory illnesses, or the presence of a diagnostic practice style effect. Finally, we note that clustering of asthmatics tends to occur at small geographic scales, while clustering of persons mistaken for asthmatics tends to occur at larger geographic scales.
Routine and ongoing geographic surveillance of chronic diseases is critical to developing an understanding of underlying epidemiology, and is critical to informing policy makers and the public about the health of the population.
地理公共卫生监测关注的是向决策者和公众描述和传播有关疾病和其他健康指标的地理信息。虽然疾病的地理分析方法有很多发展,但很少有方法被整合到一个框架中,该框架还考虑了病例检出偏倚对慢性病监测效果的影响。
我们提出了一个用于慢性病地理监测的框架,该框架整合了空间统计分析和病例检出方面的方法学进展。该框架采用分层方法来组织和建模来自卫生行政数据系统的健康信息,重要的是,它支持对地理数据中的病例检出偏倚进行检测和分析。我们在来自加拿大艾伯塔省的哮喘数据上测试了该框架。我们观察到艾伯塔省西南部(特别是原住民女性)的哮喘患病率很高。我们还观察到,可能被误诊为哮喘的人在分布上与哮喘患者相似,这表明可能存在对各种呼吸道疾病的潜在社会脆弱性,或者存在诊断实践风格的影响。最后,我们注意到哮喘患者的聚集往往发生在较小的地理尺度上,而被误诊为哮喘的人的聚集往往发生在较大的地理尺度上。
对慢性病进行常规和持续的地理监测对于了解潜在的流行病学至关重要,对于向决策者和公众通报人口健康状况也至关重要。