Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.
Biophys J. 2009 Dec 2;97(11):2985-92. doi: 10.1016/j.bpj.2009.09.010.
Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2-200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an approximately 7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to approximately 200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils.
系统变化的解决方案条件表明,弹性模量(E)的个别胶原原纤维可以变化范围为 2-200 MPa。原子力显微镜(AFM)的不同水和乙醇环境下的重建牛跟腱原纤维的纳米压痕。滴定单价盐浓度达 1 M 的 pH 值 7 导致 E 增加从 2 到 5 MPa。这种硬化效果更明显在较低的 pH 值,例如,有大约 7 倍的增加模量在添加 1 M KCl。甚至更大的增加模量,最高可达约 200 MPa,可以通过使用增加浓度的乙醇。总的来说,这些结果表明,有一些分子间力之间的原胶原蛋白单体,决定了弹性响应。这些包括水化力和氢键,离子对,和可能的疏水效应。调整这些力的相对强度可以合理调整原纤维的弹性模量。