Suppr超能文献

调整水合胶原原纤维的弹性模量。

Tuning the elastic modulus of hydrated collagen fibrils.

机构信息

Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.

出版信息

Biophys J. 2009 Dec 2;97(11):2985-92. doi: 10.1016/j.bpj.2009.09.010.

Abstract

Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2-200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an approximately 7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to approximately 200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils.

摘要

系统变化的解决方案条件表明,弹性模量(E)的个别胶原原纤维可以变化范围为 2-200 MPa。原子力显微镜(AFM)的不同水和乙醇环境下的重建牛跟腱原纤维的纳米压痕。滴定单价盐浓度达 1 M 的 pH 值 7 导致 E 增加从 2 到 5 MPa。这种硬化效果更明显在较低的 pH 值,例如,有大约 7 倍的增加模量在添加 1 M KCl。甚至更大的增加模量,最高可达约 200 MPa,可以通过使用增加浓度的乙醇。总的来说,这些结果表明,有一些分子间力之间的原胶原蛋白单体,决定了弹性响应。这些包括水化力和氢键,离子对,和可能的疏水效应。调整这些力的相对强度可以合理调整原纤维的弹性模量。

相似文献

1
Tuning the elastic modulus of hydrated collagen fibrils.
Biophys J. 2009 Dec 2;97(11):2985-92. doi: 10.1016/j.bpj.2009.09.010.
2
Dynamic mechanical analysis of collagen fibrils at the nanoscale.
J Mech Behav Biomed Mater. 2012 Jan;5(1):165-70. doi: 10.1016/j.jmbbm.2011.08.020. Epub 2011 Sep 5.
3
Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
Biophys J. 2014 Oct 21;107(8):1794-1801. doi: 10.1016/j.bpj.2014.09.003.
4
Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
Acta Biomater. 2018 Oct 15;80:217-227. doi: 10.1016/j.actbio.2018.09.027. Epub 2018 Sep 19.
6
Nanoscale measurements of the assembly of collagen to fibrils.
Int J Biol Macromol. 2010 May 1;46(4):458-64. doi: 10.1016/j.ijbiomac.2010.02.012. Epub 2010 Mar 3.
7
The effects of loading conditions and specimen environment on the nanomechanical response of canine cortical bone.
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4582-6. doi: 10.1016/j.msec.2013.07.018. Epub 2013 Jul 19.
8
Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
Int J Biol Macromol. 2016 Nov;92:240-245. doi: 10.1016/j.ijbiomac.2016.07.011. Epub 2016 Jul 10.
10
Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules.
J Mech Behav Biomed Mater. 2018 Oct;86:359-367. doi: 10.1016/j.jmbbm.2018.07.009. Epub 2018 Jul 5.

引用本文的文献

1
Virtual testing methodology to predict the mechanical behavior of collagen hydrogels from nanoarchitecture.
Mater Today Bio. 2025 Jun 9;33:101962. doi: 10.1016/j.mtbio.2025.101962. eCollection 2025 Aug.
2
Mechanical properties of mandibular and maxillary bone collagen fibrils based on nonlocal elasticity theory.
Biophys Rep (N Y). 2025 Jun 11;5(2):100210. doi: 10.1016/j.bpr.2025.100210. Epub 2025 Apr 17.
3
Tracing Cellular Senescence in Bone: Time-Dependent Changes in Osteocyte Cytoskeleton Mechanics and Morphology.
Small. 2025 Apr;21(14):e2408517. doi: 10.1002/smll.202408517. Epub 2025 Mar 3.
5
Models of Hydration Dependent Lymphatic Opening, Interstitial Fluid Flows and Ambipolar Diffusion.
Microcirculation. 2025 Jan;32(1):e12894. doi: 10.1111/micc.12894. Epub 2024 Nov 21.
6
Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications.
Adv Healthc Mater. 2023 Sep;12(23):e2300318. doi: 10.1002/adhm.202300318. Epub 2023 Jun 9.
7
Hybrid cellular Potts and bead-spring modeling of cells in fibrous extracellular matrix.
Biophys J. 2023 Jul 11;122(13):2609-2622. doi: 10.1016/j.bpj.2023.05.013. Epub 2023 May 13.

本文引用的文献

2
Mechanical properties of single electrospun collagen type I fibers.
Biomaterials. 2008 Mar;29(8):955-62. doi: 10.1016/j.biomaterials.2007.10.058.
3
Mechanical properties of native and cross-linked type I collagen fibrils.
Biophys J. 2008 Mar 15;94(6):2204-11. doi: 10.1529/biophysj.107.111013. Epub 2007 Nov 21.
4
Low strain nanomechanics of collagen fibrils.
Biomacromolecules. 2007 Nov;8(11):3298-301. doi: 10.1021/bm061162b. Epub 2007 Oct 27.
5
Collagen scaffolds for tissue engineering.
Biopolymers. 2008 May;89(5):338-44. doi: 10.1002/bip.20871.
6
Mechanical properties of collagen fibrils.
Biophys J. 2007 Aug 15;93(4):1255-63. doi: 10.1529/biophysj.106.103192. Epub 2007 May 25.
7
Novel elastic material from collagen for tissue engineering.
J Mater Sci Mater Med. 2007 Jul;18(7):1369-75. doi: 10.1007/s10856-007-0121-6. Epub 2007 Feb 3.
8
Micromechanical bending of single collagen fibrils using atomic force microscopy.
J Biomed Mater Res A. 2007 Jul;82(1):160-8. doi: 10.1002/jbm.a.31127.
9
Structural investigations on native collagen type I fibrils using AFM.
Biochem Biophys Res Commun. 2007 Mar 2;354(1):27-32. doi: 10.1016/j.bbrc.2006.12.114. Epub 2006 Dec 22.
10
Electrostatic interactions modulate the conformation of collagen I.
Biophys J. 2007 Mar 15;92(6):2108-19. doi: 10.1529/biophysj.106.094284. Epub 2007 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验