Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
J Biol Chem. 2010 Feb 19;285(8):5188-95. doi: 10.1074/jbc.M109.038166. Epub 2009 Nov 30.
Bacillus anthracis is a gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 A) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 A(2)) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.
炭疽芽孢杆菌是一种革兰氏阳性产芽孢细菌,可引起炭疽病。随着生物战中炭疽病威胁的增加,迫切需要从炭疽芽孢杆菌中鉴定新的抗菌靶标。其中一个靶标是二氢二吡啶羧酸合酶(DHDPS),它催化生成中间二氨基庚二酸和赖氨酸的途径中的关键步骤。在这项研究中,我们采用圆二色光谱法(CD spectroscopy)证明了来自炭疽芽孢杆菌的 DHDPS(Ba-DHDPS)在存在底物丙酮酸的情况下热稳定性显著增强。分析超速离心研究表明,与无配体形式相比,酶的四聚体-二聚体解离常数在存在丙酮酸时紧密了 3 倍。为了研究这种底物介导的稳定化现象的意义,我们生成了 Ba-DHDPS 的二聚体突变体(L170E/G191E),并发现其活性明显低于野生型四聚体。这表明底物丙酮酸稳定了酶的活性形式。接下来,我们测定了与丙酮酸(3HIJ)结合的 Ba-DHDPS 的高分辨率(2.15Å)晶体结构,并将其与无配体结构(1XL9)进行比较。结构分析表明,在结合了丙酮酸的结构中,四聚体界面上的埋藏表面积显著增加了 91Ų。本研究描述了一种从炭疽芽孢杆菌中稳定抗生素靶标活性寡聚形式的新机制,并揭示了一个可用于基于结构的药物设计的“阿喀琉斯之踵”。