Suppr超能文献

检测高密度脂蛋白类似物之间的功能复杂性。

Detecting the functional complexities between high-density lipoprotein mimetics.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, South Korea.

出版信息

Biomaterials. 2018 Jul;170:58-69. doi: 10.1016/j.biomaterials.2018.04.011. Epub 2018 Apr 6.

Abstract

High-density lipoprotein (HDL) is a key regulator of lipid homeostasis through its native roles like reverse cholesterol transport. The reconstitution of this natural nanoparticle (NP) has become a nexus between nanomedicine and multi-disease therapies, for which a major portion of HDL functionality is attributed to its primary scaffolding protein, apolipoprotein A1 (apoA1). ApoA1-mimetic peptides were formulated as cost-effective alternatives to apoA1-based therapies; reverse-4F (r4F) is one such peptide used as part of a nanoparticle platform. While similarities between r4F- and apoA1-based HDL-mimetic nanoparticles have been identified, key functional differences native to HDL have remained undetected. In the present study, we executed a multidisciplinary approach to uncover these differences by exploring the form, function, and medical applicability of engineered HDL-mimetic NPs (eHNPs) made from r4F (eHNP-r4F) and from apoA1 (eHNP-A1). Comparative analyses of the eHNPs through computational molecular dynamics (MD), advanced microfluidic NP synthesis and screening technologies, and in vivo animal model studies extracted distinguishable eHNP characteristics: the eHNPs share identical structural and compositional characteristics with distinct differences in NP stability and organization; eHNP-A1 could more significantly stimulate anti-inflammatory responses characteristic of the scavenger receptor class B type 1 (SR-B1) mediated pathways; and eHNP-A1 could outperform eHNP-r4F in the delivery of a model hydrophobic drug to an in vivo tumor. The biomimetic microfluidic technologies and MD simulations uniquely enabled our comparative analysis through which we determined that while eHNP-r4F is a capable NP with properties mimicking natural eHNP-A1, challenges remain in reconstituting the full functionality of NPs naturally derived from humans.

摘要

高密度脂蛋白(HDL)是通过其天然作用(如反向胆固醇转运)来调节脂质平衡的关键调节剂。这种天然纳米颗粒(NP)的重建已成为纳米医学和多疾病治疗的交汇点,其中 HDL 的主要功能部分归因于其主要支架蛋白载脂蛋白 A1(apoA1)。载脂蛋白 A1 模拟肽被制成具有成本效益的替代物,用于 apoA1 为基础的治疗;逆转 4F(r4F)就是这样一种肽,被用作纳米颗粒平台的一部分。虽然已经确定了 r4F 和 apoA1 为基础的 HDL 模拟纳米颗粒之间的相似性,但天然 HDL 所具有的关键功能差异仍然未被发现。在本研究中,我们通过探索由 r4F(eHNP-r4F)和 apoA1(eHNP-A1)制成的工程化 HDL 模拟纳米颗粒(eHNP)的形式、功能和医学适用性,采用多学科方法来揭示这些差异。通过计算分子动力学(MD)、先进的微流控 NP 合成和筛选技术以及体内动物模型研究对 eHNP 进行的比较分析,提取出可区分的 eHNP 特征:eHNP 具有相同的结构和组成特征,但 NP 的稳定性和组织存在明显差异;eHNP-A1 可以更显著地刺激清道夫受体 B 类 1(SR-B1)介导途径的抗炎反应;并且 eHNP-A1 可以在向体内肿瘤输送模型疏水性药物方面优于 eHNP-r4F。仿生微流控技术和 MD 模拟通过比较分析独特地使我们能够确定,虽然 eHNP-r4F 是一种具有类似于天然 eHNP-A1 的特性的有能力的 NP,但在重建完全源自人类的 NP 的全部功能方面仍然存在挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36e0/5918464/b02578d08edb/nihms958937f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验