Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-7609, USA.
Biostatistics. 2010 Apr;11(2):373-4. doi: 10.1093/biostatistics/kxp050. Epub 2009 Nov 30.
When analyzing a 2 x 2 table, the two-sided Fisher's exact test and the usual exact confidence interval (CI) for the odds ratio may give conflicting inferences; for example, the test rejects but the associated CI contains an odds ratio of 1. The problem is that the usual exact CI is the inversion of the test that rejects if either of the one-sided Fisher's exact tests rejects at half the nominal significance level. Further, the confidence set that is the inversion of the usual two-sided Fisher's exact test may not be an interval, so following Blaker (2000, Confidence curves and improved exact confidence intervals for discrete distributions. Canadian Journal of Statistics 28, 783-798), we define the "matching" interval as the smallest interval that contains the confidence set. We explore these 2 versions of Fisher's exact test as well as an exact test suggested by Blaker (2000) and provide the R package exact2x2 which automatically assigns the appropriate matching interval to each of the 3 exact tests.
在分析 2 x 2 表时,双边 Fisher 精确检验和常用的优势比精确置信区间 (CI) 可能会给出相互矛盾的推断;例如,检验拒绝,但相关的 CI 包含优势比为 1。问题在于,常用的精确 CI 是检验的反转,如果单边 Fisher 精确检验中的任何一个在半名义显著性水平下拒绝,则会拒绝。此外,常用双边 Fisher 精确检验的置信集可能不是一个区间,因此,遵循 Blaker(2000 年,《离散分布的置信曲线和改进的精确置信区间》。加拿大统计杂志 28,783-798),我们将“匹配”区间定义为包含置信集的最小区间。我们探索了这两种 Fisher 精确检验,以及 Blaker(2000 年)提出的精确检验,并提供了 R 包 exact2x2,它可以自动为这 3 种精确检验中的每一种分配适当的匹配区间。