Suppr超能文献

相对风险和比值比的精确置信区间。

Exact confidence intervals for the relative risk and the odds ratio.

作者信息

Wang Weizhen, Shan Guogen

机构信息

College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China.

Department of Mathematics and Statistics, Wright State University, Dayton, Ohio, U.S.A.

出版信息

Biometrics. 2015 Dec;71(4):985-95. doi: 10.1111/biom.12360. Epub 2015 Jul 30.

Abstract

For comparison of proportions, there are three commonly used measurements: the difference, the relative risk, and the odds ratio. Significant effort has been spent on exact confidence intervals for the difference. In this article, we focus on the relative risk and the odds ratio when data are collected from a matched-pairs design or a two-arm independent binomial experiment. Exact one-sided and two-sided confidence intervals are proposed for each configuration of two measurements and two types of data. The one-sided intervals are constructed using an inductive order, they are the smallest under the order, and are admissible under the set inclusion criterion. The two-sided intervals are the intersection of two one-sided intervals. R codes are developed to implement the intervals. Supplementary materials for this article are available online.

摘要

对于比例的比较,有三种常用的度量方法:差值、相对风险和比值比。人们在差值的精确置信区间方面投入了大量精力。在本文中,当数据是从配对设计或双臂独立二项试验中收集时,我们关注相对风险和比值比。针对两种度量和两种数据类型的每种组合,提出了精确的单侧和双侧置信区间。单侧区间是按照归纳顺序构建的,在该顺序下它们是最小的,并且在集合包含准则下是可接受的。双侧区间是两个单侧区间的交集。开发了R代码来实现这些区间。本文的补充材料可在线获取。

相似文献

1
3
Recommended confidence intervals for two independent binomial proportions.两个独立二项比例的推荐置信区间。
Stat Methods Med Res. 2015 Apr;24(2):224-54. doi: 10.1177/0962280211415469. Epub 2011 Oct 13.
4
Simultaneous confidence intervals for comparing binomial parameters.用于比较二项分布参数的同时置信区间。
Biometrics. 2008 Dec;64(4):1270-5. doi: 10.1111/j.1541-0420.2008.00990.x. Epub 2008 Feb 11.

引用本文的文献

3
6
Exact confidence limits for the probability of response in two-stage designs.两阶段设计中反应概率的精确置信限。
Statistics (Ber). 2018;52(5):1086-1095. doi: 10.1080/02331888.2018.1469023. Epub 2018 May 8.
7
Fisher's exact approach for post hoc analysis of a chi-squared test.用于卡方检验事后分析的费舍尔精确法。
PLoS One. 2017 Dec 20;12(12):e0188709. doi: 10.1371/journal.pone.0188709. eCollection 2017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验