Suppr超能文献

基于 LaBr3 的 PET 扫描仪的成像性能。

The imaging performance of a LaBr3-based PET scanner.

机构信息

Department of Radiology, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.

出版信息

Phys Med Biol. 2010 Jan 7;55(1):45-64. doi: 10.1088/0031-9155/55/1/004.

Abstract

A prototype time-of-flight (TOF) PET scanner based on cerium-doped lanthanum bromide [LaBr(3) (5% Ce)] has been developed. LaBr(3) has a high light output, excellent energy resolution and fast timing properties that have been predicted to lead to good image quality. Intrinsic performance measurements of spatial resolution, sensitivity and scatter fraction demonstrate good conventional PET performance; the results agree with previous simulation studies. Phantom measurements show the excellent image quality achievable with the prototype system. Phantom measurements and corresponding simulations show a faster and more uniform convergence rate, as well as more uniform quantification, for TOF reconstruction of the data, which have 375 ps intrinsic timing resolution, compared to non-TOF images. Measurements and simulations of a hot and cold sphere phantom show that the 7% energy resolution helps to mitigate residual errors in the scatter estimate because a high energy threshold (>480 keV) can be used to restrict the amount of scatter accepted without a loss of true events. Preliminary results with incorporation of a model of detector blurring in the iterative reconstruction algorithm not only show improved contrast recovery but also point out the importance of an accurate resolution model of the tails of LaBr(3)'s point spread function. The LaBr(3) TOF-PET scanner demonstrated the impact of superior timing and energy resolutions on image quality.

摘要

一种基于掺铈溴化镧(LaBr3(5% Ce))的飞行时间(TOF)正电子发射断层扫描(PET)原型扫描仪已经开发出来。LaBr3具有高光输出、优异的能量分辨率和快速的时间特性,预计这些特性将带来良好的图像质量。固有性能测量,包括空间分辨率、灵敏度和散射分数,表明具有良好的传统 PET 性能;结果与之前的模拟研究一致。体模测量显示了原型系统可实现的优异图像质量。体模测量和相应的模拟表明,与非 TOF 图像相比,对于具有 375ps 固有时间分辨率的数据,TOF 重建具有更快和更均匀的收敛速度以及更均匀的量化。对于热和冷球体模的测量和模拟表明,7%的能量分辨率有助于减轻散射估计中的残余误差,因为可以使用较高的能量阈值(>480keV)来限制接受的散射量,而不会损失真实事件。在迭代重建算法中加入探测器模糊模型的初步结果不仅表明对比度恢复得到改善,而且还指出了准确的 LaBr3点扩散函数尾部分辨率模型的重要性。LaBr3 TOF-PET 扫描仪展示了优异的时间和能量分辨率对图像质量的影响。

相似文献

1
The imaging performance of a LaBr3-based PET scanner.
Phys Med Biol. 2010 Jan 7;55(1):45-64. doi: 10.1088/0031-9155/55/1/004.
2
A count-rate model for PET scanners using pixelated Anger-logic detectors with different scintillators.
Phys Med Biol. 2005 Dec 7;50(23):5697-715. doi: 10.1088/0031-9155/50/23/020. Epub 2005 Nov 23.
3
Investigation of time-of-flight benefit for fully 3-D PET.
IEEE Trans Med Imaging. 2006 May;25(5):529-38. doi: 10.1109/TMI.2006.871419.
5
Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation.
Phys Med Biol. 2004 Oct 7;49(19):4593-610. doi: 10.1088/0031-9155/49/19/010.
6
Design study of an in situ PET scanner for use in proton beam therapy.
Phys Med Biol. 2011 May 7;56(9):2667-85. doi: 10.1088/0031-9155/56/9/002. Epub 2011 Apr 5.
7
Physical performance of the new hybrid PET∕CT Discovery-690.
Med Phys. 2011 Oct;38(10):5394-411. doi: 10.1118/1.3635220.
8
Preliminary Monte Carlo study of (18)F-FDG SPECT imaging with LaBr(3):Ce Crystal-based Gamma Cameras.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3089-92. doi: 10.1109/IEMBS.2010.5626109.
10
Energy-based scatter estimation in clinical PET.
Med Phys. 2024 Jan;51(1):54-69. doi: 10.1002/mp.16826. Epub 2023 Nov 13.

引用本文的文献

2
Detectors in positron emission tomography.
Z Med Phys. 2023 Feb;33(1):4-12. doi: 10.1016/j.zemedi.2022.08.004. Epub 2022 Oct 5.
3
A proof-of-concept study of an in-situ partial-ring time-of-flight PET scanner for proton beam verification.
IEEE Trans Radiat Plasma Med Sci. 2021 Sep;5(5):694-702. doi: 10.1109/trpms.2020.3044326. Epub 2020 Dec 14.
4
Time of Flight in Perspective: Instrumental and Computational Aspects of Time Resolution in Positron Emission Tomography.
IEEE Trans Radiat Plasma Med Sci. 2021 Sep;5(5):598-618. doi: 10.1109/trpms.2021.3084539. Epub 2021 May 27.
5
Algorithms for joint activity-attenuation estimation from positron emission tomography scatter.
EJNMMI Phys. 2019 Oct 28;6(1):18. doi: 10.1186/s40658-019-0254-y.
7
8
Innovations in Instrumentation for Positron Emission Tomography.
Semin Nucl Med. 2018 Jul;48(4):311-331. doi: 10.1053/j.semnuclmed.2018.02.006. Epub 2018 Mar 12.
9
Validation of phantom-based harmonization for patient harmonization.
Med Phys. 2017 Jul;44(7):3534-3544. doi: 10.1002/mp.12311. Epub 2017 Jun 9.
10
Advances in PET/MR instrumentation and image reconstruction.
Br J Radiol. 2018 Jan;91(1081):20160363. doi: 10.1259/bjr.20160363. Epub 2016 Jul 22.

本文引用的文献

1
Improved spatial resolution in PET scanners using sampling techniques.
IEEE Trans Nucl Sci. 2009 Jun 1;56(3):596-601. doi: 10.1109/TNS.2009.2013389.
3
Benefit of time-of-flight in PET: experimental and clinical results.
J Nucl Med. 2008 Mar;49(3):462-70. doi: 10.2967/jnumed.107.044834. Epub 2008 Feb 20.
4
Super PETT I: A Positron Emission Tomograph Utilizing Photon Time-of-Flight Information.
IEEE Trans Med Imaging. 1982;1(3):179-87. doi: 10.1109/TMI.1982.4307570.
5
Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans Med Imaging. 1994;13(4):601-9. doi: 10.1109/42.363108.
6
8
Fully 3-D PET reconstruction with system matrix derived from point source measurements.
IEEE Trans Med Imaging. 2006 Jul;25(7):907-21. doi: 10.1109/tmi.2006.876171.
9
Modeling and incorporation of system response functions in 3-D whole body PET.
IEEE Trans Med Imaging. 2006 Jul;25(7):828-37. doi: 10.1109/tmi.2006.873222.
10
Investigation of time-of-flight benefit for fully 3-D PET.
IEEE Trans Med Imaging. 2006 May;25(5):529-38. doi: 10.1109/TMI.2006.871419.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验