Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
Anal Chem. 2009 Aug 1;81(15):6080-8. doi: 10.1021/ac900424c.
Metabolic profiling of urine presents challenges because of the extensive random variation of metabolite concentrations and the dilution resulting from changes in the overall urine volume. Thus statistical analysis methods play a particularly important role; however, appropriate choices of these methods are not straightforward. Here we investigate constant and variance-stabilization normalization of raw and peak picked spectra, for use with exploratory analysis (principal component analysis) and confirmatory analysis (ordinary and Empirical Bayes t-test) in (1)H NMR-based metabolic profiling of urine. We compare the performance of these methods using urine samples spiked with known metabolites according to a Latin square design. We find that analysis of peak picked and logarithm-transformed spectra is preferred, and that signal processing and statistical analysis steps are interdependent. While variance-stabilizing transformation is preferred in conjunction with principal component analysis, constant normalization is more appropriate for use with a t-test. Empirical Bayes t-test provides more reliable conclusions when the number of samples in each group is relatively small. Performance of these methods is illustrated using a clinical metabolomics experiment on patients with type 1 diabetes to evaluate the effect of insulin deprivation.
尿液的代谢组学分析存在挑战,因为代谢物浓度的广泛随机变化以及总体尿液量变化导致的稀释。因此,统计分析方法起着特别重要的作用;然而,这些方法的适当选择并不简单。在这里,我们研究了原始和峰提取谱的恒定和方差稳定归一化,用于(1)H NMR 尿液代谢组学中的探索性分析(主成分分析)和验证性分析(普通和经验贝叶斯 t 检验)。我们根据拉丁方设计,使用含有已知代谢物的尿液样本比较了这些方法的性能。我们发现,峰提取和对数转换光谱的分析更受欢迎,并且信号处理和统计分析步骤是相互依存的。虽然方差稳定转换与主成分分析结合使用更受欢迎,但对于 t 检验,常数归一化更为合适。当每组样本数量相对较少时,经验贝叶斯 t 检验可提供更可靠的结论。我们使用 1 型糖尿病患者的临床代谢组学实验来说明这些方法的性能,以评估胰岛素缺乏的影响。