Suppr超能文献

体外小鼠胚胎发生模型揭示的全基因组复制定时动力学。

Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis.

机构信息

Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.

出版信息

Genome Res. 2010 Feb;20(2):155-69. doi: 10.1101/gr.099796.109. Epub 2009 Dec 1.

Abstract

Differentiation of mouse embryonic stem cells (mESCs) is accompanied by changes in replication timing. To explore the relationship between replication timing and cell fate transitions, we constructed genome-wide replication-timing profiles of 22 independent mouse cell lines representing 10 stages of early mouse development, and transcription profiles for seven of these stages. Replication profiles were cell-type specific, with 45% of the genome exhibiting significant changes at some point during development that were generally coordinated with changes in transcription. Comparison of early and late epiblast cell culture models revealed a set of early-to-late replication switches completed at a stage equivalent to the post-implantation epiblast, prior to germ layer specification and down-regulation of key pluripotency transcription factors [POU5F1 (also known as OCT4)/NANOG/SOX2] and coinciding with the emergence of compact chromatin near the nuclear periphery. These changes were maintained in all subsequent lineages (lineage-independent) and involved a group of irreversibly down-regulated genes, at least some of which were repositioned closer to the nuclear periphery. Importantly, many genomic regions of partially reprogrammed induced pluripotent stem cells (piPSCs) failed to re-establish ESC-specific replication-timing and transcription programs. These regions were enriched for lineage-independent early-to-late changes, which in female cells included the inactive X chromosome. Together, these results constitute a comprehensive "fate map" of replication-timing changes during early mouse development. Moreover, they support a model in which a distinct set of replication domains undergoes a form of "autosomal Lyonization" in the epiblast that is difficult to reprogram and coincides with an epigenetic commitment to differentiation prior to germ layer specification.

摘要

小鼠胚胎干细胞(mESCs)的分化伴随着复制时间的变化。为了探究复制时间与细胞命运转变之间的关系,我们构建了 22 个独立的小鼠细胞系的全基因组复制时间图谱,这些细胞系代表了早期小鼠发育的 10 个阶段,以及其中 7 个阶段的转录图谱。复制图谱具有细胞类型特异性,基因组的 45%在发育过程中的某个时间点发生了显著变化,这些变化通常与转录变化协调一致。早期和晚期外胚层细胞培养模型的比较揭示了一组早期到晚期的复制转换,这些转换发生在相当于植入后外胚层的阶段,在胚胎层特化和关键多能转录因子[POU5F1(也称为 OCT4/NANOG/SOX2)]下调之前,并且与核周附近致密染色质的出现相吻合。这些变化在所有后续的谱系中都得到了维持(谱系独立),并涉及一组不可逆下调的基因,其中至少有一些被重新定位到核周附近。重要的是,部分重编程诱导多能干细胞(piPSC)的许多基因组区域未能重新建立 ESC 特异性复制时间和转录程序。这些区域富含谱系独立的早期到晚期变化,其中包括雌性细胞中的失活 X 染色体。总之,这些结果构成了早期小鼠发育过程中复制时间变化的综合“命运图谱”。此外,它们支持这样一种模型,即在胚胎层中,一组独特的复制域会经历一种“常染色体 Lyonization”形式,这种形式难以重编程,并且与胚胎层特化前的分化相关的表观遗传承诺相一致。

相似文献

引用本文的文献

7
Emergence of enhancers at late DNA replicating regions.增强子在DNA复制后期区域的出现。
Nat Commun. 2024 Apr 24;15(1):3451. doi: 10.1038/s41467-024-47391-5.
9
MLL3/MLL4 enzymatic activity shapes DNA replication timing.MLL3/MLL4酶活性决定DNA复制时间。
bioRxiv. 2023 Dec 8:2023.12.07.569680. doi: 10.1101/2023.12.07.569680.

本文引用的文献

1
G9a selectively represses a class of late-replicating genes at the nuclear periphery.G9a在核周区域选择性抑制一类晚期复制基因。
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19363-8. doi: 10.1073/pnas.0906142106. Epub 2009 Nov 4.
5
Replication timing as an epigenetic mark.复制时间作为一种表观遗传标记。
Epigenetics. 2009 Feb 16;4(2):93-7. doi: 10.4161/epi.4.2.7772. Epub 2009 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验