Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali, Università di Catania, Catania, Italy.
FEBS J. 2010 Jan;277(1):255-62. doi: 10.1111/j.1742-4658.2009.07481.x. Epub 2009 Nov 30.
Glutathione S-transferases (GSTs) catalyze the conjugation of glutathione to hydrophobic compounds, contributing to the metabolism of toxic chemicals. In this study, we show that two naturally occurring tau GSTs (GSTUs) exhibit distinctive kinetic parameters towards 1-chloro-2,4-dinitrobenzene (CDNB), although they differ only in three amino acids (Arg89, Glu117 and Ile172 in GSTU1 are replaced by Pro89, Lys117 and Val172 in GSTU2). In order to understand the effects of the single mismatched residues, several mutant GSTs were generated through site-directed mutagenesis. The analysis of the kinetic parameters of the mutants led to the conclusion that Glu117 provides a critical contribution to the maintenance of a high-affinity CDNB-binding site. However, the substitution E117K gives rise to mutants showing increased k(cat) values for CDNB, suggesting that Lys117 might positively influence the formation of the transition state during catalysis. No changes in the K(m) values towards glutathione were found between the naturally occurring GSTs and mutants, except for the mutant caused by the substitution R89P in GSTU1, which showed a sharp increase in K(m). Moreover, the analysis of enzyme reactivation after denaturation showed that this R89P substitution leads to a two-fold enhancement of the refolded enzyme yield, suggesting that the insertion of proline might induce critical structural modifications. In contrast, the substitution P89R in GSTU2 does not modify the reactivation yield and does not impair the affinity of the mutant for glutathione, suggesting that all three residues investigated in this work are fundamental in the creation of enzymes characterized by unique biochemical properties.
谷胱甘肽 S-转移酶(GSTs)催化谷胱甘肽与疏水性化合物的结合,有助于有毒化学物质的代谢。在这项研究中,我们表明两种天然存在的 tau GSTs(GSTUs)对 1-氯-2,4-二硝基苯(CDNB)表现出不同的动力学参数,尽管它们仅在三个氨基酸(GSTU1 中的 Arg89、Glu117 和 Ile172 被 GSTU2 中的 Pro89、Lys117 和 Val172 取代)。为了了解单个错配残基的影响,通过定点突变生成了几种突变 GST。突变体动力学参数的分析得出结论,Glu117 对维持高亲和力 CDNB 结合位点具有重要贡献。然而,E117K 的取代导致突变体显示出 CDNB 的 k(cat) 值增加,表明 Lys117 可能在催化过程中对过渡态的形成产生积极影响。除了 GSTU1 中 R89P 取代引起的突变体外,天然 GSTs 和突变体之间的谷胱甘肽 K(m) 值没有变化,该突变体显示出 K(m) 值的急剧增加。此外,对变性后酶的重激活分析表明,这种 R89P 取代导致重折叠酶产率增加了两倍,表明脯氨酸的插入可能诱导关键的结构修饰。相比之下,GSTU2 中的 P89R 取代不会改变重激活产率,也不会损害突变体对谷胱甘肽的亲和力,表明在这项工作中研究的三个残基对于创建具有独特生化特性的酶都是必不可少的。