Centre National de la Recherche Scientifique, Université Pierre et Marie Curie Paris, UMR, Roscoff, France.
Cell Calcium. 2010 Jan;47(1):29-36. doi: 10.1016/j.ceca.2009.11.002. Epub 2009 Dec 1.
High throughput methodologies that measure the distribution of osmotic fragilities in red blood cell populations have enabled the investigation of dynamic changes in red cell homeostasis and membrane permeability in health and disease. The common assumption in the interpretation of dynamic changes in osmotic fragility curves is that left or right shifts reflect a decreased or increased hydration state of the cells, respectively, allowing direct inferences on membrane transport from osmotic fragility measurements. However, the assumed correlation between shifts in osmotic fragility and hydration state has never been directly explored, and may prove invalid in certain conditions. We investigated here whether this correlation holds for red cells exposed to elevated intracellular calcium. The results showed that elevated cell calcium causes a progressive increase in osmotic fragility with minimal contribution from cell hydration (<8%). Loss of membrane area by the release of 160+/-40nm diameter (mean+/-SD) vesicles is shown to be a major contributor, but may not account for the full non-hydration component. The rest must reflect a specific calcium-induced lytic vulnerability of the membrane causing rupture before the cells attain their maximal spherical volumes. The implications of these findings are discussed.
高通量方法可测量红细胞群体的渗透压脆性分布,从而能够研究健康和疾病状态下红细胞内稳态和膜通透性的动态变化。在解释渗透压脆性曲线的动态变化时,通常假设左移或右移分别反映了细胞水化状态的降低或增加,从而可以直接从渗透压脆性测量推断膜转运。然而,渗透压脆性和水化状态之间的这种关联从未被直接探讨过,并且在某些情况下可能证明是无效的。我们在此研究了这种相关性是否适用于暴露于细胞内钙升高的红细胞。结果表明,细胞内钙升高导致渗透压脆性逐渐增加,而细胞水化的贡献很小(<8%)。通过释放 160+/-40nm 直径(平均值+/-标准差)的小泡导致膜面积损失,这是主要贡献者,但可能无法解释全部非水化成分。其余部分必须反映特定的钙诱导的膜溶血性脆弱性,导致细胞达到最大球形体积之前发生破裂。讨论了这些发现的意义。