Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universidad Politécnica de Valencia, Valencia, Spain.
Biosens Bioelectron. 2010 Feb 15;25(6):1460-6. doi: 10.1016/j.bios.2009.10.048. Epub 2009 Nov 6.
The selective introduction of functional groups on the surface of silicon nitride/silicon oxide nanostructures was studied. Chemical strategies based on organosilane, Si-H and N-H reactivities were assayed. Among these strategies, the use of glutaraldehyde to selectively immobilize biomolecules only on the silicon nitride part of the chip surface was the most effective for the covalent attachment of proteins, maintaining also their bioavailability. The biomolecule surface coverage results up to 80% and the modification is selective versus silicon oxide; the biomolecule attaching only to silicon nitride and leaving the silicon oxide area of the device unmodified. The effectiveness of our novel selective surface modification procedure is also supported by comparing experimental and numerical calculations of the optical performance of a label-free optical ring resonator based on Si(3)N(4)/SiO(2) slot-waveguides.
研究了在氮化硅/氧化硅纳米结构表面选择性引入官能团。基于有机硅烷、Si-H 和 N-H 反应性的化学策略进行了评估。在这些策略中,使用戊二醛选择性地将生物分子仅固定在芯片表面的氮化硅部分上,对于蛋白质的共价附着是最有效的,同时也保持了它们的生物可用性。生物分子表面覆盖率高达 80%,并且修饰是选择性的,针对氧化硅;生物分子只附着在氮化硅上,而不修饰器件的氧化硅区域。通过比较基于 Si(3)N(4)/SiO(2)槽波导的无标记光学环形谐振器的光学性能的实验和数值计算,也支持了我们新颖的选择性表面修饰程序的有效性。