Suppr超能文献

混合不确定环境下基于追索权的设施选址问题

Recourse-based facility-location problems in hybrid uncertain environment.

作者信息

Wang Shuming, Watada Junzo, Pedrycz Witold

机构信息

Graduate School of Information, Production and Systems, Waseda University, Fukuoka, Japan.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2010 Aug;40(4):1176-87. doi: 10.1109/TSMCB.2009.2035630. Epub 2009 Dec 1.

Abstract

The objective of this paper is to study facility-location problems in the presence of a hybrid uncertain environment involving both randomness and fuzziness. A two-stage fuzzy-random facility-location model with recourse (FR-FLMR) is developed in which both the demands and costs are assumed to be fuzzy-random variables. The bounds of the optimal objective value of the two-stage FR-FLMR are derived. As, in general, the fuzzy-random parameters of the FR-FLMR can be regarded as continuous fuzzy-random variables with an infinite number of realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this requirement, the recourse function cannot be determined analytically, and, hence, the model cannot benefit from the use of techniques of classical mathematical programming. In order to solve the location problems of this nature, we first develop a technique of fuzzy-random simulation to compute the recourse function. The convergence of such simulation scenarios is discussed. In the sequel, we propose a hybrid mutation-based binary ant-colony optimization (MBACO) approach to the two-stage FR-FLMR, which comprises the fuzzy-random simulation and the simplex algorithm. A numerical experiment illustrates the application of the hybrid MBACO algorithm. The comparison shows that the hybrid MBACO finds better solutions than the one using other discrete metaheuristic algorithms, such as binary particle-swarm optimization, genetic algorithm, and tabu search.

摘要

本文的目的是研究在同时存在随机性和模糊性的混合不确定环境下的设施选址问题。建立了一个带有追索权的两阶段模糊随机设施选址模型(FR-FLMR),其中需求和成本均被假定为模糊随机变量。推导了两阶段FR-FLMR最优目标值的边界。一般来说,由于FR-FLMR的模糊随机参数可被视为具有无限多个实现值的连续模糊随机变量,追索权的计算需要求解无限多个第二阶段规划问题。由于这一要求,追索权函数无法通过解析方法确定,因此该模型无法受益于经典数学规划技术的应用。为了解决这类选址问题,我们首先开发了一种模糊随机模拟技术来计算追索权函数,并讨论了这种模拟场景的收敛性。接下来,我们针对两阶段FR-FLMR提出了一种基于混合变异的二进制蚁群优化(MBACO)方法,该方法包括模糊随机模拟和单纯形算法。一个数值实验说明了混合MBACO算法的应用。比较结果表明,混合MBACO算法比使用其他离散元启发式算法(如二进制粒子群优化、遗传算法和禁忌搜索)能找到更好的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验