Suppr超能文献

上丘的阈下激活驱动扫视运动学习。

Subthreshold activation of the superior colliculus drives saccade motor learning.

作者信息

Soetedjo Robijanto, Fuchs Albert F, Kojima Yoshiko

机构信息

Department of Physiology and Biophysics and Washington Regional Primate Research Center, University of Washington, Seattle, Washington 98195-7330, USA.

出版信息

J Neurosci. 2009 Dec 2;29(48):15213-22. doi: 10.1523/JNEUROSCI.4296-09.2009.

Abstract

How the brain learns and maintains accurate precision movements is currently unknown. At times throughout life, rapid gaze shifts (saccades) become inaccurate, but the brain makes gradual adjustments so they again stop on target. Previously, we showed that complex spikes (CSs) in Purkinje cells of the oculomotor cerebellum report the direction and amplitude by which saccades are in error. Anatomical studies indicate that this error signal could originate in the superior colliculus (SC). Here, we deliver subthreshold electrical stimulation of the SC after the saccade lands to signal an apparent error. The size of saccades in the same direction as the simulated error gradually increase; those in the opposite direction decrease. The electrically adapted saccades endure after stimulation is discontinued, exhibit an adaptation field, can undergo changes in direction, and depend on error timing. These electrically induced adaptations were virtually identical with those produced by the visually induced adaptations that we report here for comparable visual errors in the same monkeys. Therefore, our experiments reveal that an additional role for the SC in the generation of saccades is to provide a vector error signal that drives dysmetric saccades to adapt. Moreover, the characteristics of the electrically induced adaptation reflect those of error-related CS activity in the oculomotor cerebellum, suggesting that CS activity serves as the learning signal. We speculate that CS activity may serve as the error signal that drives other kinds of motor learning as well.

摘要

大脑如何学习并维持精确的精准运动目前尚不清楚。在人的一生中,快速的眼球移动(扫视)有时会变得不准确,但大脑会逐渐进行调整,使其再次停留在目标上。此前,我们发现动眼小脑浦肯野细胞中的复合峰电位(CSs)能够报告扫视误差的方向和幅度。解剖学研究表明,这种误差信号可能起源于上丘(SC)。在此,我们在扫视着陆后对上丘进行阈下电刺激,以发出明显误差信号。与模拟误差方向相同的扫视幅度逐渐增大;相反方向的扫视幅度则减小。电适应后的扫视在刺激停止后仍持续存在,表现出适应场,可发生方向变化,且依赖于误差时间。这些电诱导的适应与我们在此报告的相同猴子在类似视觉误差下视觉诱导的适应几乎相同。因此,我们的实验表明,上丘在扫视产生中的另一个作用是提供一个矢量误差信号,驱动不对称扫视进行适应。此外,电诱导适应的特征反映了动眼小脑中与误差相关的CS活动的特征,这表明CS活动充当学习信号。我们推测CS活动也可能作为驱动其他类型运动学习的误差信号。

相似文献

4
How cerebellar motor learning keeps saccades accurate.小脑运动学习如何保持眼球运动的准确性。
J Neurophysiol. 2019 Jun 1;121(6):2153-2162. doi: 10.1152/jn.00781.2018. Epub 2019 Apr 17.
6

引用本文的文献

1
The superior colliculus projection upon the macaque inferior olive.上丘对猕猴下橄榄核的投射。
Brain Struct Funct. 2024 Nov;229(8):1855-1871. doi: 10.1007/s00429-023-02743-7. Epub 2024 Jan 19.
7
Adaptive control of movement deceleration during saccades.扫视过程中运动减速的自适应控制。
PLoS Comput Biol. 2021 Jul 6;17(7):e1009176. doi: 10.1371/journal.pcbi.1009176. eCollection 2021 Jul.
10
Population coding in the cerebellum: a machine learning perspective.小脑的群体编码:机器学习视角。
J Neurophysiol. 2020 Dec 1;124(6):2022-2051. doi: 10.1152/jn.00449.2020. Epub 2020 Oct 28.

本文引用的文献

3
Activity changes in monkey superior colliculus during saccade adaptation.扫视适应过程中猴上丘的活动变化
J Neurophysiol. 2007 Jun;97(6):4096-107. doi: 10.1152/jn.01278.2006. Epub 2007 Apr 18.
8
Effect of visual error size on saccade adaptation in monkey.视觉误差大小对猴子扫视适应的影响。
J Neurophysiol. 2003 Aug;90(2):1235-44. doi: 10.1152/jn.00656.2002. Epub 2003 Apr 23.
10
Mechanisms of motor learning in the cerebellum.小脑运动学习的机制。
Brain Res. 2000 Dec 15;886(1-2):237-245. doi: 10.1016/s0006-8993(00)03142-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验