Suppr超能文献

小脑的群体编码:机器学习视角。

Population coding in the cerebellum: a machine learning perspective.

机构信息

Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland.

出版信息

J Neurophysiol. 2020 Dec 1;124(6):2022-2051. doi: 10.1152/jn.00449.2020. Epub 2020 Oct 28.

Abstract

The cere resembles a feedforward, three-layer network of neurons in which the "hidden layer" consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.

摘要

小脑类似于前馈的、具有三层神经元的网络,其中“隐藏层”由浦肯野细胞(P 细胞)组成,输出层由小脑深部核团(DCN)神经元组成。在这种类比中,每个 DCN 神经元的输出都是一个预测,与实际观察结果进行比较,从而产生源自下橄榄核的误差信号。有效的学习需要误差信号到达 DCN 神经元以及投射到它们的 P 细胞。然而,小脑学习的基本规则被违反了:橄榄核到 DCN 的投射很弱,尤其是在成年期。相反,一个来自橄榄核的非常强的信号被发送到 P 细胞,产生复杂的尖峰。奇怪的是,P 细胞被分组到小的群体中,汇聚到单个 DCN 神经元。为什么 P 细胞以这种方式组织,每个群体的成员标准是什么?在这里,我应用机器学习的基本数学方法,并考虑到形成一个群体的 P 细胞表现出一种特殊属性的事实:它们可以同步它们的复杂尖峰,这反过来又抑制了它们投射到的 DCN 神经元的活动。因此,复杂的尖峰不仅可以作为 P 细胞的教学信号,而且通过复杂的尖峰同步,一个 P 细胞群体可以作为产生错误输出的 DCN 神经元的替代教师。将 P 细胞分组为共享对错误的偏好的小群体似乎满足了有效学习的一个关键要求:将错误信息提供给负责错误的输出层神经元(DCN),以及对其有贡献的隐藏层神经元(P 细胞)。这种群体编码可能解释了学习过程中几种显著的行为特征,包括多个时间尺度、防止擦除以及记忆的自发恢复。

相似文献

1
Population coding in the cerebellum: a machine learning perspective.小脑的群体编码:机器学习视角。
J Neurophysiol. 2020 Dec 1;124(6):2022-2051. doi: 10.1152/jn.00449.2020. Epub 2020 Oct 28.
4
Role of the olivo-cerebellar complex in motor learning and control.橄榄小脑复合体在运动学习和控制中的作用。
Front Neural Circuits. 2013 May 28;7:94. doi: 10.3389/fncir.2013.00094. eCollection 2013.

引用本文的文献

2
The olivary input to the cerebellum dissociates sensory events from movement plans.橄榄核小脑传入将感觉事件与运动计划分开。
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2318849121. doi: 10.1073/pnas.2318849121. Epub 2024 Apr 17.

本文引用的文献

1
Précis of .……的摘要
Behav Brain Sci. 2020 Dec 2;44:e123. doi: 10.1017/S0140525X20000667.
4
Cerebellar plasticity and associative memories are controlled by perineuronal nets.小脑的可塑性和联想记忆受神经周细胞网络的控制。
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6855-6865. doi: 10.1073/pnas.1916163117. Epub 2020 Mar 9.
6
Continual Learning in a Multi-Layer Network of an Electric Fish.电鱼多层次网络中的持续学习。
Cell. 2019 Nov 27;179(6):1382-1392.e10. doi: 10.1016/j.cell.2019.10.020. Epub 2019 Nov 14.
10
Cerebellar Contribution to Preparatory Activity in Motor Neocortex.小脑对运动新皮层预备活动的贡献。
Neuron. 2019 Aug 7;103(3):506-519.e4. doi: 10.1016/j.neuron.2019.05.022. Epub 2019 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验