An Steven S, Kim Theodore, James Doug L
Cornell University.
ACM Trans Graph. 2009 Dec 1;27(5):165. doi: 10.1145/1409060.1409118.
We propose an efficient scheme for evaluating nonlinear subspace forces (and Jacobians) associated with subspace deformations. The core problem we address is efficient integration of the subspace force density over the 3D spatial domain. Similar to Gaussian quadrature schemes that efficiently integrate functions that lie in particular polynomial subspaces, we propose cubature schemes (multi-dimensional quadrature) optimized for efficient integration of force densities associated with particular subspace deformations, particular materials, and particular geometric domains. We support generic subspace deformation kinematics, and nonlinear hyperelastic materials. For an r-dimensional deformation subspace with O(r) cubature points, our method is able to evaluate subspace forces at O(r(2)) cost. We also describe composite cubature rules for runtime error estimation. Results are provided for various subspace deformation models, several hyperelastic materials (St.Venant-Kirchhoff, Mooney-Rivlin, Arruda-Boyce), and multimodal (graphics, haptics, sound) applications. We show dramatically better efficiency than traditional Monte Carlo integration. CR CATEGORIES: I.6.8 [Simulation and Modeling]: Types of Simulation-Animation, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Physically based modeling G.1.4 [Mathematics of Computing]: Numerical Analysis-Quadrature and Numerical Differentiation.
我们提出了一种用于评估与子空间变形相关的非线性子空间力(和雅可比矩阵)的有效方案。我们所解决的核心问题是在三维空间域上高效积分子空间力密度。类似于能有效积分特定多项式子空间中函数的高斯求积方案,我们提出了针对与特定子空间变形、特定材料以及特定几何域相关的力密度进行高效积分而优化的求积方案(多维求积)。我们支持一般的子空间变形运动学以及非线性超弹性材料。对于具有(O(r))个求积点的(r)维变形子空间,我们的方法能够以(O(r^2))的代价评估子空间力。我们还描述了用于运行时误差估计的复合求积规则。给出了各种子空间变形模型、几种超弹性材料(圣维南 - 基尔霍夫、穆尼 - 里夫林、阿鲁达 - 博伊斯)以及多模态(图形、触觉、声音)应用的结果。我们展示出比传统蒙特卡罗积分显著更高的效率。CR 分类:I.6.8 [模拟与建模]:模拟类型 - 动画,I.3.5 [计算机图形学]:计算几何与对象建模 - 基于物理的建模,G.1.4 [计算数学]:数值分析 - 求积与数值微分。