Université Côte d Azur, Asclepios Research Group, Inria, France.
Université Côte d Azur, Asclepios Research Group, Inria, France.
Med Image Anal. 2018 Apr;45:1-12. doi: 10.1016/j.media.2017.12.008. Epub 2017 Dec 23.
One major challenge when trying to build low-dimensional representation of the cardiac motion is its natural circular pattern during a cycle, therefore making the mean image a poor descriptor of the whole sequence. Therefore, traditional approaches for the analysis of the cardiac deformation use one specific frame of the sequence - the end-diastolic (ED) frame - as a reference to study the whole motion. Consequently, this methodology is biased by this empirical choice. Moreover, the ED image might be a poor reference when looking at large deformation for example at the end-systolic (ES) frame. In this paper, we propose a novel approach to study cardiac motion in 4D image sequences using low-dimensional subspace analysis. Instead of building subspaces relying on a mean value we use a novel type of subspaces called Barycentric Subspaces which are implicitly defined as the weighted Karcher means of k+1 reference images instead of being defined with respect to one reference image. In the first part of this article, we introduce the methodological framework and the algorithms used to manipulate images within these new subspaces: how to compute the projection of a given image on the Barycentric Subspace with its coordinates, and the opposite operation of computing an image from a set of references and coordinates. Then we show how this framework can be applied to cardiac motion problems and lead to significant improvements over the single reference method. Firstly, by computing the low-dimensional representation of two populations we show that the parameters extracted correspond to relevant cardiac motion features leading to an efficient representation and discrimination of both groups. Secondly, in motion estimation, we use the projection on this low-dimensional subspace as an additional prior on the regularization in cardiac motion tracking, efficiently reducing the error of the registration between the ED and ES by almost 30%. We also derive a symmetric and transitive formulation of the registration that can be used both for frame-to-frame and frame-to-reference registration. Finally, we look at the reconstruction of the images using our proposed low-dimensional representation and show that this multi-references method using Barycentric Subspaces performs better than traditional approaches based on a single reference.
在尝试构建心脏运动的低维表示时,一个主要的挑战是其在一个周期内的自然循环模式,因此使平均图像成为整个序列的较差描述符。因此,传统的心脏变形分析方法使用序列中的一个特定帧 - 舒张末期(ED)帧 - 作为参考来研究整个运动。因此,这种方法受到这种经验选择的影响。此外,当观察例如收缩末期(ES)帧的大变形时,ED 图像可能是一个较差的参考。在本文中,我们提出了一种使用低维子空间分析研究 4D 图像序列中心脏运动的新方法。我们不是依赖于平均值来构建子空间,而是使用一种新类型的子空间,称为重心子空间,它是通过加权 k+1 个参考图像的 Karcher 平均而隐式定义的,而不是相对于一个参考图像定义的。在本文的第一部分,我们介绍了用于在这些新子空间中操作图像的方法框架和算法:如何计算给定图像在重心子空间中的投影及其坐标,以及从一组参考图像和坐标计算图像的相反操作。然后,我们展示了如何将这个框架应用于心脏运动问题,并导致比单一参考方法有显著的改进。首先,通过计算两个群体的低维表示,我们表明提取的参数对应于相关的心脏运动特征,从而有效地表示和区分两组。其次,在运动估计中,我们将此低维子空间上的投影作为心脏运动跟踪正则化的附加先验,有效地将 ED 和 ES 之间的配准误差降低近 30%。我们还推导出了一种对称和传递的配准公式,可用于帧到帧和帧到参考的配准。最后,我们使用我们提出的低维表示来查看图像的重建,并表明使用重心子空间的这种多参考方法比基于单个参考的传统方法表现更好。