Suppr超能文献

基于 FDM 的数据驱动 U-Net 作为二维拉普拉斯 PINN 求解器。

FDM data driven U-Net as a 2D Laplace PINN solver.

机构信息

Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.

出版信息

Sci Rep. 2023 Jun 5;13(1):9116. doi: 10.1038/s41598-023-35531-8.

Abstract

Efficient solution of partial differential equations (PDEs) of physical laws is of interest for manifold applications in computer science and image analysis. However, conventional domain discretization techniques for numerical solving PDEs such as Finite Difference (FDM), Finite Element (FEM) methods are unsuitable for real-time applications and are also quite laborious in adaptation to new applications, especially for non-experts in numerical mathematics and computational modeling. More recently, alternative approaches to solving PDEs using the so-called Physically Informed Neural Networks (PINNs) received increasing attention because of their straightforward application to new data and potentially more efficient performance. In this work, we present a novel data-driven approach to solve 2D Laplace PDE with arbitrary boundary conditions using deep learning models trained on a large set of reference FDM solutions. Our experimental results show that both forward and inverse 2D Laplace problems can efficiently be solved using the proposed PINN approach with nearly real-time performance and average accuracy of 94% for different types of boundary value problems compared to FDM. In summary, our deep learning based PINN PDE solver provides an efficient tool with various applications in image analysis and computational simulation of image-based physical boundary value problems.

摘要

高效求解物理定律的偏微分方程 (PDE) 在计算机科学和图像分析的诸多应用中具有重要意义。然而,传统的数值求解 PDE 的域离散化技术,如有限差分 (FDM)、有限元 (FEM) 方法,不适用于实时应用,并且对于数值数学和计算建模方面的非专家来说,也相当繁琐,难以适应新的应用。最近,使用所谓的物理信息神经网络 (PINN) 来求解 PDE 的替代方法因其可直接应用于新数据且性能可能更高效而受到越来越多的关注。在这项工作中,我们提出了一种新颖的数据驱动方法,使用基于大量参考 FDM 解训练的深度学习模型来求解具有任意边界条件的二维拉普拉斯 PDE。我们的实验结果表明,所提出的 PINN 方法可以高效地求解正向和反向二维拉普拉斯问题,具有近实时的性能,与 FDM 相比,对于不同类型的边值问题,平均准确率达到 94%。总之,我们基于深度学习的 PINN PDE 求解器提供了一种高效的工具,在图像分析和基于图像的物理边值问题的计算模拟中有多种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8205/10241951/d2ca8201da91/41598_2023_35531_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验