Suppr超能文献

利用规则归纳学习从基因组和表观遗传信息中刻画核小体动力学。

Characterizing nucleosome dynamics from genomic and epigenetic information using rule induction learning.

机构信息

School of Knowledge Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

出版信息

BMC Genomics. 2009 Dec 3;10 Suppl 3(Suppl 3):S27. doi: 10.1186/1471-2164-10-S3-S27.

Abstract

BACKGROUND

Eukaryotic genomes are packaged into chromatin, a compact structure containing fundamental repeating units, the nucleosomes. The mobility of nucleosomes plays important roles in many DNA-related processes by regulating the accessibility of regulatory elements to biological machineries. Although it has been known that various factors, such as DNA sequences, histone modifications, and chromatin remodelling complexes, could affect nucleosome stability, the mechanisms of how they regulate this stability are still unclear.

RESULTS

In this paper, we propose a novel computational method based on rule induction learning to characterize nucleosome dynamics using both genomic and histone modification information. When applied on S. cerevisiae data, our method produced totally 98 rules characterizing nucleosome dynamics on chromosome III and promoter regions. Analyzing these rules we discovered that, some DNA motifs and post-translational modifications of histone proteins play significant roles in regulating nucleosome stability. Notably, these DNA motifs are strong determinants for nucleosome forming and inhibiting potential; and these histone modifications have strong relation with transcriptional activities, i.e. activation and repression. We also found some new patterns which may reflect the cooperation between these two factors in regulating the stability of nucleosomes.

CONCLUSION

DNA motifs and histone modifications can individually and, in some cases, cooperatively regulate nucleosome stability. This suggests additional insights into mechanisms by which cells control important biological processes, such as transcription, replication, and DNA repair.

摘要

背景

真核生物基因组被包装成染色质,这是一种包含基本重复单元核小体的紧凑结构。核小体的流动性通过调节调控元件对生物机制的可及性,在许多与 DNA 相关的过程中发挥着重要作用。尽管已经知道,包括 DNA 序列、组蛋白修饰和染色质重塑复合物在内的各种因素可能会影响核小体的稳定性,但它们调节这种稳定性的机制仍不清楚。

结果

在本文中,我们提出了一种基于规则归纳学习的新计算方法,利用基因组和组蛋白修饰信息来描述核小体的动力学。当应用于酿酒酵母的数据时,我们的方法总共产生了 98 条描述染色体 III 和启动子区域核小体动力学的规则。分析这些规则,我们发现,一些 DNA 基序和组蛋白翻译后的修饰在调节核小体稳定性方面起着重要作用。值得注意的是,这些 DNA 基序是核小体形成和抑制潜能的强决定因素;这些组蛋白修饰与转录活性,即激活和抑制有很强的关系。我们还发现了一些新的模式,它们可能反映了这两个因素在调节核小体稳定性方面的合作。

结论

DNA 基序和组蛋白修饰可以单独地,在某些情况下,协同地调节核小体的稳定性。这为细胞控制转录、复制和 DNA 修复等重要生物学过程的机制提供了更多的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/2788380/6d0c58239df7/1471-2164-10-S3-S27-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验