Suppr超能文献

通过丘脑中继实现分离皮质区同步的动态控制。

Dynamic control for synchronization of separated cortical areas through thalamic relay.

机构信息

IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat des Illes Balears, E-07122 Palma de Mallorca, Spain.

出版信息

Neuroimage. 2010 Sep;52(3):947-55. doi: 10.1016/j.neuroimage.2009.11.058. Epub 2009 Dec 1.

Abstract

Binding of features and information which are processed at different cortical areas is generally supposed to be achieved by synchrony despite the non-negligible delays between these areas. In this work we study the dynamics and synchronization properties of a simplified model of the thalamocortical circuit where different cortical areas are interconnected with a certain delay, that is longer than the internal time scale of the neurons. Using this simple model we find that the thalamus could serve as a central subcortical area that is able to generate zero-lag synchrony between distant cortical areas by means of dynamical relaying (Vicente et al., 2008). Our results show that the model circuit is able to generate fast oscillations in frequency ranges of the beta and gamma bands triggered by an external input to the thalamus formed by independent Poisson trains. We propose a control mechanism to turn "On" and "Off" the synchronization between cortical areas as a function of the relative rate of the external input fed into dorsal and ventral thalamic neuronal populations. The current results emphasize the hypothesis that the thalamus could control the dynamics of the thalamocortical functional networks enabling two separated cortical areas to be either synchronized (at zero-lag) or unsynchronized. This control may happen at a fast time scale, in agreement with experimental data, and without any need of plasticity or adaptation mechanisms which typically require longer time scales.

摘要

尽管不同脑区之间存在不可忽视的延迟,但通常认为不同皮质区处理的特征和信息的绑定是通过同步实现的。在这项工作中,我们研究了丘脑皮质电路简化模型的动力学和同步特性,其中不同的皮质区通过一定的延迟相互连接,该延迟长于神经元的内部时间尺度。使用这个简单的模型,我们发现丘脑可以作为一个中央皮质下区域,通过动态中继(Vicente 等人,2008 年),在远距离皮质区之间产生零延迟同步。我们的结果表明,该模型电路能够在由独立泊松列车形成的外部输入到丘脑时,在β和γ频带的快速振荡频率范围内产生快速振荡。我们提出了一种控制机制,作为进入背侧和腹侧丘脑神经元群体的外部输入的相对速率的函数,来“开启”和“关闭”皮质区之间的同步。目前的结果强调了这样一种假设,即丘脑可以控制丘脑皮质功能网络的动力学,使两个分离的皮质区能够同步(零延迟)或不同步。这种控制可以在快速时间尺度上发生,与实验数据一致,而不需要通常需要更长时间尺度的可塑性或适应机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验