Electrical Engineering and Bioengineering Group, Department of Industrial Engineering & Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
Lab. of Cognitive and Computational Neuroscience, CTB, UPM, Madrid, Spain.
PLoS One. 2018 Aug 16;13(8):e0201660. doi: 10.1371/journal.pone.0201660. eCollection 2018.
Functional connectivity (FC) characterizes brain activity from a multivariate set of N brain signals by means of an NxN matrix A, whose elements estimate the dependence within each possible pair of signals. Such matrix can be used as a feature vector for (un)supervised subject classification. Yet if N is large, A is highly dimensional. Little is known on the effect that different strategies to reduce its dimensionality may have on its classification ability. Here, we apply different machine learning algorithms to classify 33 children (age [6-14 years]) into two groups (healthy controls and Attention Deficit Hyperactivity Disorder patients) using EEG FC patterns obtained from two phase synchronisation indices. We found that the classification is highly successful (around 95%) if the whole matrix A is taken into account, and the relevant features are selected using machine learning methods. However, if FC algorithms are applied instead to transform A into a lower dimensionality matrix, the classification rate drops to less than 80%. We conclude that, for the purpose of pattern classification, the relevant features should be selected among the elements of A by using appropriate machine learning algorithms.
功能连接(FC)通过一个 NxN 的矩阵 A 来描述来自 N 个脑信号的多元脑活动,其中的元素估计了每个可能的信号对之间的依赖性。这样的矩阵可以用作(无)监督的个体分类的特征向量。然而,如果 N 很大,A 的维度就会很高。关于不同的降维策略可能对其分类能力产生的影响,我们知之甚少。在这里,我们应用不同的机器学习算法,使用从两个相位同步指标获得的 EEG FC 模式,将 33 名儿童(年龄[6-14 岁])分为两组(健康对照组和注意力缺陷多动障碍患者)。我们发现,如果考虑整个矩阵 A,则分类非常成功(约 95%),并且使用机器学习方法选择了相关特征。然而,如果将 FC 算法应用于将 A 转换为低维矩阵,则分类率降至 80%以下。我们得出结论,为了进行模式分类,应该通过使用适当的机器学习算法从 A 的元素中选择相关特征。