Stem Cell and Brain Research Institute, Institut National de la Santé et de la Recherche Médicale, U846, 18 Avenue Doyen Lepine, 69500 Bron France.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21924-9. doi: 10.1073/pnas.0909894106. Epub 2009 Dec 3.
The link between cortical precursors G1 duration (TG1) and their mode of division remains a major unresolved issue of potential importance for regulating corticogenesis. Here, we induced a 25% reduction in TG1 in mouse cortical precursors via forced expression of cyclin D1 and cyclin E1. We found that in utero electroporation-mediated gene transfer transfects a cohort of synchronously cycling precursors, necessitating alternative methods of measuring cell-cycle phases to those classical used. TG1 reduction promotes cell-cycle reentry at the expense of differentiation and increases the self-renewal capacities of Pax6 precursors as well as of Tbr2 basal precursors (BPs). A population level analysis reveals sequential and lineage-specific effects, showing that TG1 reduction: (i) promotes Pax6 self-renewing proliferative divisions before promoting divisions wherein Pax6 precursors generate Tbr2 BPs and (ii) promotes self-renewing proliferative divisions of Tbr2 precursors at the expense of neurogenesis, thus leading to an amplification of the BPs pool in the subventricular zone and the dispersed mitotic compartment of the intermediate zone. These results point to the G1 mode of division relationship as an essential control mechanism of corticogenesis. This is further supported by long-term studies showing that TG1 reduction results in cytoarchitectural modifications including supernumerary supragranular neuron production. Modeling confirms that the TG1-induced changes in neuron production and laminar fate are mediated via the changes in the mode of division. These findings also have implications for understanding the mechanisms that have contributed to brain enlargement and complexity during evolution.
皮质前体细胞 G1 期持续时间(TG1)与其分裂方式之间的联系仍然是一个尚未解决的重要问题,对于调控皮质发生具有潜在重要性。在这里,我们通过强制表达细胞周期蛋白 D1 和 E1,使小鼠皮质前体细胞的 TG1 减少 25%。我们发现,胚胎电穿孔介导的基因转染可转染一大群同步分裂的前体细胞,这需要替代经典方法来测量细胞周期各阶段。TG1 减少以牺牲分化为代价促进细胞周期再进入,并增加 Pax6 前体细胞和 Tbr2 基底前体细胞(BPs)的自我更新能力。群体水平分析显示出顺序和谱系特异性的影响,表明 TG1 减少:(i)在促进产生 Tbr2 BPs 的 Pax6 前体细胞分裂之前,促进 Pax6 自我更新增殖性分裂;(ii)以牺牲神经发生为代价,促进 Tbr2 前体细胞的自我更新增殖性分裂,从而导致 SVZ 中 BPs 池和中间区弥散有丝分裂区的扩增。这些结果表明,G1 分裂方式关系是皮质发生的重要控制机制。长期研究进一步支持了这一观点,这些研究表明,TG1 减少导致细胞结构改建,包括产生额外的颗粒上层神经元。建模证实,TG1 诱导的神经元产生和层命运变化是通过分裂方式的变化介导的。这些发现也对理解在进化过程中导致大脑增大和复杂化的机制具有重要意义。