Suppr超能文献

自体荧光蛋白作为真核生物中的光敏剂。

Autofluorescent proteins as photosensitizer in eukaryontes.

机构信息

German Cancer Research Center, Department of Biophysics of Macromolecules, Heidelberg, Germany.

出版信息

Int J Med Sci. 2009 Dec 1;6(6):365-73. doi: 10.7150/ijms.6.365.

Abstract

Since the discovery of the green fluorescent green protein (GFP) in 1961 many variants of fluorescent proteins (FP) were detected. The importance was underlined by the Nobel price award in chemistry 2008 for the invention, application, and development of the GFP by Shimomura, Chalfie and Tsien. GFP, first described by Shimomura now is indispensible in the scientific daily life. Since then and also in future fluorescent proteins will lead to new applications as reporters in cell biology. Such FPs can absorb visible day-light and predominantly one variant of the red fluorescent protein, the KillerRed protein (KRED) emits active electrons producing reactive oxygen species (ROS) leading to photokilling processes in eukaryotes. KRED can be activated by daylight as a photosensitizing agent. It is quite obvious that the KRED's expression and localization is critical with respect to damage, mutation and finally killing of eukaryotic cells. We found evidence that the KRED's cytotoxicity is ascendantly location-dependent from the cell membrane over the nuclear lamina to the chromatin in the cell nucleus. Daylight illumination of cells harbouring the KRED protein fused with the histone H2A, a DNA-binding protein which is critical for the formation of the chromatin structure results in cell killing. Therefore the H2A-KRED fusion protein can be considered as an appropriate candidate for the photodynamic therapy (PDT). This finding can be transferred to current photodynamic approaches and can enhance their therapeutic outcome.

摘要

自 1961 年发现绿色荧光蛋白(GFP)以来,已经检测到许多荧光蛋白(FP)的变体。2008 年诺贝尔化学奖授予 Shimomura、Chalfie 和 Tsien 发明、应用和开发 GFP,强调了其重要性。GFP 最初由 Shimomura 描述,现在在科学日常生活中不可或缺。从那时起,荧光蛋白也将在未来带来新的应用,作为细胞生物学中的报告基因。这些 FPs 可以吸收可见光,而主要的红色荧光蛋白变体 KillerRed 蛋白(KRED)则会发出活性电子,产生活性氧(ROS),从而导致真核生物的光杀伤过程。KRED 可以作为光敏剂被日光激活。很明显,KRED 的表达和定位对于真核细胞的损伤、突变和最终死亡至关重要。我们发现证据表明,KRED 的细胞毒性从细胞膜到核纤层再到细胞核中的染色质呈上升的位置依赖性。对含有与组蛋白 H2A 融合的 KRED 蛋白的细胞进行日光照射,H2A 是一种对染色质结构形成至关重要的 DNA 结合蛋白,会导致细胞死亡。因此,H2A-KRED 融合蛋白可以被认为是光动力疗法(PDT)的合适候选物。这一发现可以应用于当前的光动力方法,并可以提高其治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e6/2786992/8f77253aec64/ijmsv06p0365g01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验