Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA.
BMC Med Res Methodol. 2009 Dec 4;9:80. doi: 10.1186/1471-2288-9-80.
BACKGROUND: Meta-analysis is increasingly used as a key source of evidence synthesis to inform clinical practice. The theory and statistical foundations of meta-analysis continually evolve, providing solutions to many new and challenging problems. In practice, most meta-analyses are performed in general statistical packages or dedicated meta-analysis programs. RESULTS: Herein, we introduce Meta-Analyst, a novel, powerful, intuitive, and free meta-analysis program for the meta-analysis of a variety of problems. Meta-Analyst is implemented in C# atop of the Microsoft .NET framework, and features a graphical user interface. The software performs several meta-analysis and meta-regression models for binary and continuous outcomes, as well as analyses for diagnostic and prognostic test studies in the frequentist and Bayesian frameworks. Moreover, Meta-Analyst includes a flexible tool to edit and customize generated meta-analysis graphs (e.g., forest plots) and provides output in many formats (images, Adobe PDF, Microsoft Word-ready RTF). The software architecture employed allows for rapid changes to be made to either the Graphical User Interface (GUI) or to the analytic modules.We verified the numerical precision of Meta-Analyst by comparing its output with that from standard meta-analysis routines in Stata over a large database of 11,803 meta-analyses of binary outcome data, and 6,881 meta-analyses of continuous outcome data from the Cochrane Library of Systematic Reviews. Results from analyses of diagnostic and prognostic test studies have been verified in a limited number of meta-analyses versus MetaDisc and MetaTest. Bayesian statistical analyses use the OpenBUGS calculation engine (and are thus as accurate as the standalone OpenBUGS software). CONCLUSION: We have developed and validated a new program for conducting meta-analyses that combines the advantages of existing software for this task.
背景:荟萃分析越来越多地被用作证据综合的关键来源,以指导临床实践。荟萃分析的理论和统计基础不断发展,为许多新的和具有挑战性的问题提供了解决方案。在实践中,大多数荟萃分析都是在通用统计软件包或专用荟萃分析程序中进行的。
结果:本文介绍了 Meta-Analyst,这是一个新的、强大的、直观的、免费的荟萃分析程序,可用于各种问题的荟萃分析。Meta-Analyst 是用 C#语言在 Microsoft.NET 框架之上实现的,具有图形用户界面。该软件可用于执行二分类和连续结局的几种荟萃分析和荟萃回归模型,以及在频率论和贝叶斯框架下进行诊断和预后试验研究的分析。此外,Meta-Analyst 还包括一个灵活的工具,可以编辑和自定义生成的荟萃分析图(例如森林图),并以多种格式(图像、Adobe PDF、Microsoft Word 就绪 RTF)输出。所采用的软件架构允许快速更改图形用户界面 (GUI) 或分析模块。我们通过将 Meta-Analyst 的输出与 Stata 中的标准荟萃分析例程在包含 11803 项二分类结局数据荟萃分析和来自 Cochrane 系统评价文库的 6881 项连续结局数据荟萃分析的大型数据库中的输出进行比较,验证了 Meta-Analyst 的数值精度。在有限数量的荟萃分析中,已经针对诊断和预后试验研究的分析结果与 MetaDisc 和 MetaTest 进行了验证。贝叶斯统计分析使用 OpenBUGS 计算引擎(因此与独立的 OpenBUGS 软件一样准确)。
结论:我们开发并验证了一个用于进行荟萃分析的新程序,该程序结合了现有软件在这一任务中的优势。
BMC Med Res Methodol. 2009-12-4
BMC Med Res Methodol. 2006-7-12
BMC Med Res Methodol. 2022-11-28
Comput Methods Programs Biomed. 1997-7
BMC Med Res Methodol. 2006-10-13
Early Hum Dev. 2020-11
World J Gastrointest Endosc. 2025-8-16
BMC Sports Sci Med Rehabil. 2025-7-28
AIMS Public Health. 2025-4-16
J Eval Clin Pract. 2025-4
Clinics (Sao Paulo). 2025-4-23
BMC Med Res Methodol. 2007-9-10
BMC Med Res Methodol. 2006-10-13
BMJ. 2006-9-16
BMC Med Res Methodol. 2006-7-12
Biostatistics. 2007-4