Suppr超能文献

动态因果建模:生物物理和统计基础的批判性回顾。

Dynamic causal modelling: a critical review of the biophysical and statistical foundations.

机构信息

Wellcome Trust Centre for Neuroimaging, University College of London, UK.

出版信息

Neuroimage. 2011 Sep 15;58(2):312-22. doi: 10.1016/j.neuroimage.2009.11.062. Epub 2009 Dec 1.

Abstract

The goal of dynamic causal modelling (DCM) of neuroimaging data is to study experimentally induced changes in functional integration among brain regions. This requires (i) biophysically plausible and physiologically interpretable models of neuronal network dynamics that can predict distributed brain responses to experimental stimuli and (ii) efficient statistical methods for parameter estimation and model comparison. These two key components of DCM have been the focus of more than thirty methodological articles since the seminal work of Friston and colleagues published in 2003. In this paper, we provide a critical review of the current state-of-the-art of DCM. We inspect the properties of DCM in relation to the most common neuroimaging modalities (fMRI and EEG/MEG) and the specificity of inference on neural systems that can be made from these data. We then discuss both the plausibility of the underlying biophysical models and the robustness of the statistical inversion techniques. Finally, we discuss potential extensions of the current DCM framework, such as stochastic DCMs, plastic DCMs and field DCMs.

摘要

动态因果建模(DCM)的目标是研究神经影像学数据中脑区之间功能整合的实验诱导变化。这需要(i)能够预测实验刺激引起的分布式脑反应的具有生理合理性和可生理解释的神经元网络动力学模型,以及(ii)用于参数估计和模型比较的有效统计方法。自 2003 年 Friston 及其同事发表开创性工作以来,DCM 的这两个关键组成部分已经成为 30 多篇方法学文章的焦点。在本文中,我们对 DCM 的最新技术进行了批判性回顾。我们检查了 DCM 与最常见的神经影像学模态(fMRI 和 EEG/MEG)的关系,以及从这些数据中对神经系统进行推断的特异性。然后,我们讨论了基础生物物理模型的合理性和统计反演技术的稳健性。最后,我们讨论了当前 DCM 框架的潜在扩展,例如随机 DCM、可塑 DCM 和场 DCM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验