Suppr超能文献

生物学家视角下的热力学和物理化学与低温生物学的相关性。

A biologist's view of the relevance of thermodynamics and physical chemistry to cryobiology.

机构信息

Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences Building, Knoxville, TN 37996-0840, USA.

出版信息

Cryobiology. 2010 Feb;60(1):4-10. doi: 10.1016/j.cryobiol.2009.12.001. Epub 2009 Dec 4.

Abstract

Thermodynamics and physical chemistry have played powerful roles the past 45years in interpreting cryobiological problems and in predicting cryobiological outcomes. The author has been guided by a few core principles in using these concepts and tools and this paper discusses these core principles. They are (1) the importance of chemical potentials and of the difference between the chemical potentials of water and solutes inside the cell and outside in determining the direction and rate of fluxes of water and solutes. (2) The influence of the curvature of an ice crystal on its chemical potential and on the ability of ice to pass through pores in cell membranes, on the nucleation temperature of supercooled water, and on the recrystallization of ice. (3) The use of Le Chatalier's Principle in qualitatively predicting the direction of a reaction in response to variables like pressure. (4) The fact that the energy differences between State A and State B are independent of the path taken to go from A to B. (5) The importance of being aware of the assumptions underlying thermodynamic models of cryobiological events. And (6), the difficulties in obtaining experimental verification of thermodynamic and physical-chemical models.

摘要

热力学和物理化学在过去的 45 年中在解释低温生物学问题和预测低温生物学结果方面发挥了强大的作用。作者在使用这些概念和工具时遵循了一些核心原则,本文讨论了这些核心原则。它们是:(1)化学势以及细胞内水和溶质的化学势与细胞外化学势之间的差异在确定水和溶质的流动方向和速率方面的重要性。(2)冰晶曲率对其化学势以及冰通过细胞膜孔隙的能力、过冷水的成核温度和冰的再结晶的影响。(3)使用李查特里尔原理定性预测反应在压力等变量下的方向。(4)A 态和 B 态之间的能量差异与从 A 到 B 所走的路径无关。(5)意识到低温生物学事件的热力学模型所基于的假设的重要性。(6)获得热力学和物理化学模型的实验验证的困难。

相似文献

1
A biologist's view of the relevance of thermodynamics and physical chemistry to cryobiology.
Cryobiology. 2010 Feb;60(1):4-10. doi: 10.1016/j.cryobiol.2009.12.001. Epub 2009 Dec 4.
2
Introduction to the special issue: Thermodynamic aspects of cryobiology.
Cryobiology. 2010 Feb;60(1):1-3. doi: 10.1016/j.cryobiol.2009.07.006. Epub 2009 Jul 18.
3
Extra- and intracellular ice formation in mouse oocytes.
Cryobiology. 2005 Aug;51(1):29-53. doi: 10.1016/j.cryobiol.2005.04.008.
4
A new approach for freezing of aqueous solutions under active control of the nucleation temperature.
Cryobiology. 2006 Oct;53(2):248-57. doi: 10.1016/j.cryobiol.2006.06.005. Epub 2006 Aug 2.
6
Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics.
Cryobiology. 2010 Feb;60(1):43-51. doi: 10.1016/j.cryobiol.2009.07.004. Epub 2009 Jul 16.
7
Isochoric preservation: a novel characterization method.
Cryobiology. 2010 Feb;60(1):23-9. doi: 10.1016/j.cryobiol.2009.06.010. Epub 2009 Jun 25.
8
The thermodynamic principles of isochoric cryopreservation.
Cryobiology. 2005 Apr;50(2):121-38. doi: 10.1016/j.cryobiol.2004.12.002.
9
Fundamentals of cryobiology in reproductive medicine.
Reprod Biomed Online. 2004 Dec;9(6):680-91. doi: 10.1016/s1472-6483(10)61780-4.
10
Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of required coefficients.
Cryobiology. 2014 Oct;69(2):305-17. doi: 10.1016/j.cryobiol.2014.08.005. Epub 2014 Aug 23.

引用本文的文献

1
Improving cell reinfusion to enhance the efficacy of chimeric antigen receptor T-cell therapy and alleviate complications.
Heliyon. 2024 Mar 16;10(7):e28098. doi: 10.1016/j.heliyon.2024.e28098. eCollection 2024 Apr 15.
2
Insect Freeze-Tolerance Downunder: The Microbial Connection.
Insects. 2023 Jan 13;14(1):89. doi: 10.3390/insects14010089.
3
Proteostasis in ice: the role of heat shock proteins and ubiquitin in the freeze tolerance of the intertidal mussel, Mytilus trossulus.
J Comp Physiol B. 2023 Mar;193(2):155-169. doi: 10.1007/s00360-022-01473-2. Epub 2023 Jan 2.
4
Spermatozoa Obtained From Alpaca . Effects of Seminal Plasma Added at Post-thawing.
Front Vet Sci. 2021 Feb 10;8:611301. doi: 10.3389/fvets.2021.611301. eCollection 2021.
6
Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
Proc Biol Sci. 2019 Mar 27;286(1899):20190050. doi: 10.1098/rspb.2019.0050.
7
Serum- and albumin-free cryopreservation of endothelial monolayers with a new solution.
Organogenesis. 2018;14(2):107-121. doi: 10.1080/15476278.2018.1501136. Epub 2018 Aug 6.
8
Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Microorganisms.
Biomacromolecules. 2018 Aug 13;19(8):3371-3376. doi: 10.1021/acs.biomac.8b00660. Epub 2018 Jul 6.
9
Polymer mimics of biomacromolecular antifreezes.
Nat Commun. 2017 Nov 16;8(1):1546. doi: 10.1038/s41467-017-01421-7.
10
Assessment of motion and kinematic characteristics of frozen-thawed Sirohi goat semen using computer-assisted semen analysis.
Vet World. 2016 Feb;9(2):203-6. doi: 10.14202/vetworld.2015.203-206. Epub 2016 Feb 20.

本文引用的文献

1
Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling.
Cryobiology. 2008 Jun;56(3):171-80. doi: 10.1016/j.cryobiol.2008.02.001. Epub 2008 Feb 12.
2
Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.
Cryobiology. 2007 Apr;54(2):212-22. doi: 10.1016/j.cryobiol.2007.01.007. Epub 2007 Feb 4.
3
Extra- and intracellular ice formation in mouse oocytes.
Cryobiology. 2005 Aug;51(1):29-53. doi: 10.1016/j.cryobiol.2005.04.008.
5
Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct.
Biophys J. 2002 Apr;82(4):1858-68. doi: 10.1016/S0006-3495(02)75536-7.
6
Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
Biophys J. 2001 Sep;81(3):1389-97. doi: 10.1016/S0006-3495(01)75794-3.
7
Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.
Cryobiology. 1998 Dec;37(4):271-89. doi: 10.1006/cryo.1998.2135.
8
Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol.
Hum Reprod. 1995 May;10(5):1109-22. doi: 10.1093/oxfordjournals.humrep.a136103.
9
Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos.
Cell Biophys. 1990 Aug;17(1):53-92. doi: 10.1007/BF02989804.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验