Faes Luca, Porta Alberto, Nollo Giandomenico
Dept. of Physics and BioTech, University of Trento, 38060 Mattarello (TN), Italy.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6280-3. doi: 10.1109/IEMBS.2009.5332477.
This paper addresses the topic of evaluating the significance of frequency domain measures of causal coupling in multivariate time series through generation of surrogate data. The considered approaches are the traditional Fourier Transform (FT) algorithm and a new causal FT (CFT) algorithm for surrogate data generation. Both algorithms preserve the FT modulus of the original series; differences are in the phase relationships, that are completely destroyed for FT surrogates and imposed after switching off the link over the considered causal direction for CFT surrogates. The ability of the algorithms to assess causality in the frequency domain was tested using the directed coherence as discriminating parameter. Evaluation on simulated multivariate linear processes and application over multichannel EEG recordings showed that the utilization of CFT surrogates improves specificity of the test for nonzero spectral causality, as FT surrogates may attribute to a direct coupling the presence of indirect connectivity patterns.
本文通过生成替代数据来探讨评估多元时间序列中因果耦合频域测量显著性的主题。所考虑的方法是传统傅里叶变换(FT)算法和一种用于生成替代数据的新因果傅里叶变换(CFT)算法。两种算法都保留了原始序列的FT模;不同之处在于相位关系,对于FT替代数据,相位关系被完全破坏,而对于CFT替代数据,在关闭所考虑因果方向上的链接后施加相位关系。使用定向相干作为判别参数测试了算法在频域中评估因果关系的能力。对模拟多元线性过程的评估以及在多通道脑电图记录上的应用表明,使用CFT替代数据提高了非零频谱因果关系测试的特异性,因为FT替代数据可能将间接连接模式的存在归因于直接耦合。