Omidvarnia A H, Mesbah M, Khlif M S, O'Toole J M, Colditz P B, Boashash B
Clinical Research Centre, The University of Queensland, Brisbane, Australia.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1423-6. doi: 10.1109/IEMBS.2011.6090335.
Multivariate Granger causality in the time-frequency domain as a representation of time-varying cortical connectivity in the brain has been investigated for the adult case. This is, however, not the case in newborns as the nature of the transient changes in the newborn EEG is different from that of adults. This paper aims to evaluate the performance of the time-varying versions of the two popular Granger causality measures, namely Partial Directed Coherence (PDC) and direct Directed Transfer Function (dDTF). The parameters of the time-varying AR, that models the inter-channel interactions, are estimated using Dual Extended Kalman Filter (DEKF) as it accounts for both non-stationarity and non-linearity behaviors of the EEG. Using simulated data, we show that fast changing cortical connectivity between channels can be measured more accurately using the time-varying PDC. The performance of the time-varying PDC is also tested on a neonatal EEG exhibiting seizure.
作为大脑中时变皮质连接性的一种表示,时频域中的多变量格兰杰因果关系已在成人案例中得到研究。然而,新生儿的情况并非如此,因为新生儿脑电图瞬态变化的性质与成人不同。本文旨在评估两种流行的格兰杰因果关系测量方法的时变版本的性能,即偏定向相干性(PDC)和直接定向传递函数(dDTF)。使用双扩展卡尔曼滤波器(DEKF)估计模拟通道间相互作用的时变自回归(AR)模型的参数,因为它考虑了脑电图的非平稳性和非线性行为。使用模拟数据,我们表明使用时变PDC可以更准确地测量通道之间快速变化的皮质连接性。时变PDC的性能也在表现出癫痫发作的新生儿脑电图上进行了测试。