Institute for Knowledge Discovery, Graz University of Technology Graz, Austria.
Front Neuroinform. 2014 Mar 11;8:22. doi: 10.3389/fninf.2014.00022. eCollection 2014.
Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT-a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.
脑连接分析已成为神经科学的重要研究工具。可以从脑电图 (EEG) 重建的皮质源之间估计连通性。此类分析通常依赖于试验平均以获得可靠的结果。但是,一些应用程序,如脑机接口 (BCI),需要单试估计方法。在本文中,我们提出了 SCoT-a 用于 Python 的源连接工具箱。该工具箱实现了使用 MVARICA 方法进行盲源分解和连通性估计的例程。此外,还有一种称为 CSPVARICA 的新扩展,适用于标记数据。SCoT 依赖于向量自回归 (VAR) 模型从各种谱测度估计连通性。可选地,可以对这些 VAR 模型进行正则化,以促进不适定应用,例如单试拟合。我们在运动想象 (MI) 数据上演示了 SCoT 的基本用法。此外,我们还展示了在 BCI 应用中使用 SCoT 进行特征提取的模拟结果。这些结果表明,CSPVARICA 和正确的正则化可以显著提高 MI 分类。虽然 SCoT 主要设计用于 BCI 应用,但它包含了神经科学其他领域的有用工具。SCoT 是一个软件包,(1) 将联合源分解和连接性估计带到开放的 Python 平台,(2) 提供用于单试连通性估计的工具。源代码根据 MIT 许可证发布,并可在 github.com/SCoT-dev/SCoT 上在线获取。