You Xiaozhen, Guillen Magno, Bernal Byron, Gaillard William D, Adjouadi Malek
Biomedical Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5397-400. doi: 10.1109/IEMBS.2009.5332811.
In this study, a novel application of Principal Component Analysis (PCA) is proposed to detect language activation map patterns. These activation patterns were obtained by processing functional Magnetic Resonance Imaging (fMRI) studies on both control and localization related epilepsy (LRE) patients as they performed an auditory word definition task. Most group statistical analyses of fMRI datasets look for "commonality" under the assumption of the homogeneity of the sample. However, inter-subject variance may be expected to increase in large "normal" or otherwise heterogeneous patient groups. In such cases, certain different patterns may share a common feature, comprising of small categorical sub-groups otherwise hidden within the main pooling statistical procedure. These variant patterns may be of importance both in normal and patient groups. fMRI atypical-language patterns can be separated by qualitative visual inspection or by means of Laterality Indices (LI) based on region of interest. LI is a coefficient related to the asymmetry of distribution of activated voxels with respect to the midline and it lacks specific spatial and graphical information. We describe a mathematical and computational method for the automatic discrimination of variant spatial patterns of fMRI activation in a mixed population of control subjects and LRE patients. Unique in this study is the provision of a data-driven mechanism to automatically extract brain activation patterns from a heterogeneous population. This method will lead to automatic self-clustering of the datasets provided by different institutions often with different acquisition parameters.
在本研究中,提出了主成分分析(PCA)的一种新应用,以检测语言激活图谱模式。这些激活模式是通过对对照组和定位相关癫痫(LRE)患者在执行听觉单词定义任务时进行功能磁共振成像(fMRI)研究而获得的。大多数fMRI数据集的组统计分析在样本同质性的假设下寻找“共性”。然而,在大型“正常”或其他异质性患者群体中,受试者间的差异可能会增加。在这种情况下,某些不同的模式可能共享一个共同特征,该特征由隐藏在主要合并统计程序中的小分类子组组成。这些变异模式在正常组和患者组中可能都很重要。fMRI非典型语言模式可以通过定性视觉检查或基于感兴趣区域的偏侧指数(LI)来分离。LI是一个与激活体素相对于中线的分布不对称性相关的系数,它缺乏特定的空间和图形信息。我们描述了一种数学和计算方法,用于自动区分对照组和LRE患者混合群体中fMRI激活的变异空间模式。本研究的独特之处在于提供了一种数据驱动机制,以自动从异质性群体中提取脑激活模式。这种方法将导致由不同机构提供的、通常具有不同采集参数的数据集自动进行自我聚类。