Kannathal N, Choo Min Lim, Acharya U Rajendra, Sadasivan P K
Department of ECE, National University of Singapore, Singapore 119260, Singapore.
Comput Methods Programs Biomed. 2005 Dec;80(3):187-94. doi: 10.1016/j.cmpb.2005.06.012. Epub 2005 Oct 10.
The electroencephalogram (EEG) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer cannot directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The aim of this work is to compare the different entropy estimators when applied to EEG data from normal and epileptic subjects. The results obtained indicate that entropy estimators can distinguish normal and epileptic EEG data with more than 95% confidence (using t-test). The classification ability of the entropy measures is tested using ANFIS classifier. The results are promising and a classification accuracy of about 90% is achieved.
脑电图(EEG)是一种包含大脑状态信息的代表性信号。波形的形状可能包含有关大脑状态的有用信息。然而,人类观察者无法直接监测这些细微细节。此外,由于生物信号具有高度主观性,症状可能在时间尺度上随机出现。因此,使用计算机提取和分析的EEG信号参数在诊断中非常有用。这项工作的目的是比较应用于正常和癫痫患者EEG数据时不同的熵估计器。获得的结果表明,熵估计器能够以超过95%的置信度区分正常和癫痫EEG数据(使用t检验)。使用自适应神经模糊推理系统(ANFIS)分类器测试熵测度的分类能力。结果很有前景,实现了约90%的分类准确率。