Lu Ude, Song Dong, Berger Theodore W
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA. ulu@ usc.edu
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3330-4. doi: 10.1109/IEMBS.2009.5333275.
Neurons transform a series of presynaptic spikes into a series of postsynaptic spikes through a number of nonlinear mechanisms. A nonlinear model with a dynamical threshold was built using a Volterra Laguerre kernel method to characterize the spike train to spike train transformations of hippocampal CA1 pyramidal neurons. Inputs of the model were broadband Poisson random impulse trains with a 2 Hz mean frequency, and outputs of the model were the corresponding evoked post-synaptic potential (PSP) and spike train data recorded from CA1 cell bodies using a whole-cell recording technique. The model consists of four major components, i.e., feedforward kernels representing the transformation of presynaptic spikes to PSPs; a dynamical threshold kernel determining threshold value based on output inter-spike-intervals (ISIs); a spike detector; and a feedback kernel representing the spike-triggered after-potentials.
神经元通过多种非线性机制将一系列突触前尖峰转换为一系列突触后尖峰。使用Volterra-Laguerre核方法构建了一个具有动态阈值的非线性模型,以表征海马CA1锥体神经元的尖峰序列到尖峰序列的转换。该模型的输入是平均频率为2Hz的宽带泊松随机脉冲序列,模型的输出是使用全细胞记录技术从CA1细胞体记录的相应诱发突触后电位(PSP)和尖峰序列数据。该模型由四个主要部分组成,即表示突触前尖峰到PSP转换的前馈核;一个基于输出峰峰间期(ISI)确定阈值的动态阈值核;一个尖峰检测器;以及一个表示尖峰触发后电位的反馈核。