Suppr超能文献

突触驱动宽带细胞内活动期间神经元动作电位阈值的非线性动力学建模。

Nonlinear dynamic modeling of neuron action potential threshold during synaptically driven broadband intracellular activity.

机构信息

Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

IEEE Trans Biomed Eng. 2012 Mar;59(3):706-16. doi: 10.1109/TBME.2011.2178241. Epub 2011 Dec 6.

Abstract

Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction.

摘要

动作电位(AP)产生的神经元阈值的活动依赖性变化是从突触前到突触后尖峰序列转换尖峰序列时间模式的关键决定因素之一。在这项研究中,我们模拟了在突触驱动的宽带细胞内活动期间阈值变化的非线性动力学。首先,在生理上合理的宽带刺激条件下记录单个 CA1 锥体神经元的膜电位。其次,开发了一种从膜电位的连续记录中测量 AP 阈值的方法。它涉及通过分析膜电位的三阶导数来测量 AP 的转折点。应用了四种具有不同时间模式的刺激范式,通过比较测量的 AP 转折点和通过改变刺激强度估计的实际 AP 阈值来验证该方法。结果表明,AP 转折点提供了 AP 阈值的一致测量,除了恒定的偏移量。这表明 1)AP 转折点的变化代表了阈值动力学的非线性;2)需要对恒定偏移量进行优化,以实现准确的尖峰预测。第三,建立了一个非线性动态三阶 Volterra 模型来描述阈值动力学和 AP 活动之间的关系。结果表明,该模型可以根据前面的 AP 准确预测阈值。最后,将动态阈值模型集成到以前开发的单个神经元模型中,导致尖峰预测提高了 33%。

相似文献

1
Nonlinear dynamic modeling of neuron action potential threshold during synaptically driven broadband intracellular activity.
IEEE Trans Biomed Eng. 2012 Mar;59(3):706-16. doi: 10.1109/TBME.2011.2178241. Epub 2011 Dec 6.
2
Nonlinear dynamic modeling of synaptically driven single hippocampal neuron intracellular activity.
IEEE Trans Biomed Eng. 2011 May;58(5):1303-13. doi: 10.1109/TBME.2011.2105870. Epub 2011 Jan 13.
3
Nonlinear model of single hippocampal neurons with dynamical thresholds.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3330-4. doi: 10.1109/IEMBS.2009.5333275.
4
Nonparametric modeling of single neuron.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2469-72. doi: 10.1109/IEMBS.2008.4649700.
6
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
7
Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
Neuroscience. 2008 Jul 31;155(1):64-75. doi: 10.1016/j.neuroscience.2008.05.009. Epub 2008 May 21.
8
Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons.
Brain Res. 2013 Jul 3;1520:23-35. doi: 10.1016/j.brainres.2013.04.053. Epub 2013 May 4.
10
A simple Markov model of sodium channels with a dynamic threshold.
J Comput Neurosci. 2014 Aug;37(1):181-91. doi: 10.1007/s10827-014-0496-6. Epub 2014 Jan 29.

引用本文的文献

1
Emotional Theory of Rationality.
Front Integr Neurosci. 2019 Apr 5;13:11. doi: 10.3389/fnint.2019.00011. eCollection 2019.
2
Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Knock-Out Mice.
J Neurosci. 2019 Jan 2;39(1):28-43. doi: 10.1523/JNEUROSCI.1593-18.2018. Epub 2018 Nov 2.
3
Loss of GABA -mediated interhemispheric synaptic inhibition in stroke periphery.
J Physiol. 2018 May 15;596(10):1949-1964. doi: 10.1113/JP275690. Epub 2018 Apr 17.
4
Hippocampal closed-loop modeling and implications for seizure stimulation design.
J Neural Eng. 2015 Oct;12(5):056017. doi: 10.1088/1741-2560/12/5/056017. Epub 2015 Sep 10.

本文引用的文献

1
Nonlinear dynamic modeling of synaptically driven single hippocampal neuron intracellular activity.
IEEE Trans Biomed Eng. 2011 May;58(5):1303-13. doi: 10.1109/TBME.2011.2105870. Epub 2011 Jan 13.
3
A threshold equation for action potential initiation.
PLoS Comput Biol. 2010 Jul 8;6(7):e1000850. doi: 10.1371/journal.pcbi.1000850.
4
Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold.
Front Comput Neurosci. 2009 Jul 30;3:9. doi: 10.3389/neuro.10.009.2009. eCollection 2009.
5
Nonlinear modeling of neural population dynamics for hippocampal prostheses.
Neural Netw. 2009 Nov;22(9):1340-51. doi: 10.1016/j.neunet.2009.05.004. Epub 2009 May 22.
6
A stochastic model of the repetitive activity of neurons.
Biophys J. 1966 Jan;6(1):53-69. doi: 10.1016/S0006-3495(66)86639-0.
7
Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: Computational study.
J Comput Neurosci. 2009 Feb;26(1):1-19. doi: 10.1007/s10827-008-0097-3. Epub 2008 May 28.
8
Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.
J Comput Neurosci. 2009 Feb;26(1):21-37. doi: 10.1007/s10827-008-0098-2. Epub 2008 May 27.
10
Simple model of spiking neurons.
IEEE Trans Neural Netw. 2003;14(6):1569-72. doi: 10.1109/TNN.2003.820440.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验