Suppr超能文献

突触驱动的单个海马神经元细胞内活动的非线性动力学建模。

Nonlinear dynamic modeling of synaptically driven single hippocampal neuron intracellular activity.

机构信息

Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

IEEE Trans Biomed Eng. 2011 May;58(5):1303-13. doi: 10.1109/TBME.2011.2105870. Epub 2011 Jan 13.

Abstract

A high-order nonlinear dynamic model of the input-output properties of single hippocampal CA1 pyramidal neurons was developed based on synaptically driven intracellular activity. The purpose of this study is to construct a model that: 1) can capture the nonlinear dynamics of both subthreshold activities [postsynaptic potentials (PSPs)] and suprathreshold activities (action potentials) in a single formalism; 2) is sufficiently general to be applied to any spike-input and spike-output neurons (point process input and point process output neural systems); and 3) is computationally efficient. The model consisted of three major components: 1) feedforward kernels (up to third order) that transform presynaptic action potentials into PSPs; 2) a constant threshold, above which action potentials are generated; and 3) a feedback kernel (first order) that describes spike-triggered after-potentials. The model was applied to CA1 pyramidal cells, as they were electrically stimulated with broadband Poisson random impulse trains through the Schaffer collaterals. The random impulse trains used here have physiological properties similar to spiking patterns observed in CA3 hippocampal neurons. PSPs and action potentials were recorded from the soma of CA1 pyramidal neurons using whole-cell patch-clamp recording. We evaluated the model performance separately with respect to PSP waveforms and the occurrence of spikes. The average normalized mean square error of PSP prediction is 14.4%. The average spike prediction error rate is 18.8%. In summary, although prediction errors still could be reduced, the model successfully captures the majority of high-order nonlinear dynamics of the single-neuron intracellular activity. The model captures the general biophysical processes with a small set of open parameters that are directly constrained by the intracellular recording, and thus, can be easily applied to any spike-input and spike-output neuron.

摘要

基于突触驱动的细胞内活动,建立了单个海马 CA1 锥体神经元输入-输出特性的高阶非线性动力学模型。本研究的目的是构建一个模型:1)能够在单个公式中捕获亚阈活动[突触后电位 (PSP)]和超阈活动(动作电位)的非线性动力学;2)足够通用,可应用于任何尖峰输入和尖峰输出神经元(点过程输入和点过程输出神经系统);3)计算效率高。该模型由三个主要部分组成:1)前馈核(最高三阶),将前突触动作电位转换为 PSP;2)一个恒定的阈值,超过该阈值就会产生动作电位;3)一个描述尖峰触发后电位的反馈核(一阶)。该模型应用于 CA1 锥体细胞,通过 Schaffer 侧枝对其进行宽带泊松随机脉冲串的电刺激。这里使用的随机脉冲串具有类似于在 CA3 海马神经元中观察到的尖峰模式的生理特性。使用全细胞膜片钳记录从 CA1 锥体神经元的胞体记录 PSP 和动作电位。我们分别评估了模型在 PSP 波形和尖峰发生方面的性能。PSP 预测的平均归一均方误差为 14.4%。尖峰预测错误率的平均为 18.8%。总之,尽管预测误差仍然可以降低,但该模型成功地捕获了单个神经元细胞内活动的大部分高阶非线性动力学。该模型通过一组直接受细胞内记录约束的小的开放参数来捕获一般的生物物理过程,因此可以轻松应用于任何尖峰输入和尖峰输出神经元。

相似文献

1
Nonlinear dynamic modeling of synaptically driven single hippocampal neuron intracellular activity.
IEEE Trans Biomed Eng. 2011 May;58(5):1303-13. doi: 10.1109/TBME.2011.2105870. Epub 2011 Jan 13.
2
Nonlinear dynamic modeling of neuron action potential threshold during synaptically driven broadband intracellular activity.
IEEE Trans Biomed Eng. 2012 Mar;59(3):706-16. doi: 10.1109/TBME.2011.2178241. Epub 2011 Dec 6.
3
Nonparametric modeling of single neuron.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2469-72. doi: 10.1109/IEMBS.2008.4649700.
4
Nonlinear model of single hippocampal neurons with dynamical thresholds.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3330-4. doi: 10.1109/IEMBS.2009.5333275.
5
Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
Neuroscience. 2008 Jul 31;155(1):64-75. doi: 10.1016/j.neuroscience.2008.05.009. Epub 2008 May 21.
6
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
7
Nonlinear modeling of neural population dynamics for hippocampal prostheses.
Neural Netw. 2009 Nov;22(9):1340-51. doi: 10.1016/j.neunet.2009.05.004. Epub 2009 May 22.

引用本文的文献

1
Higuchi Fractal Dimension as a Method for Assessing Response to Sound Stimuli in Patients with Diffuse Axonal Brain Injury.
Sovrem Tekhnologii Med. 2021;12(4):63-70. doi: 10.17691/stm2020.12.4.08. Epub 2020 Aug 27.
2
System identification of point-process neural systems using probability based Volterra kernels.
J Neurosci Methods. 2015 Jan 30;240:179-92. doi: 10.1016/j.jneumeth.2014.11.013. Epub 2014 Dec 3.
3
Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus.
J Comput Neurosci. 2015 Feb;38(1):89-103. doi: 10.1007/s10827-014-0530-8. Epub 2014 Sep 27.
4
Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources.
Front Comput Neurosci. 2014 Sep 1;8:95. doi: 10.3389/fncom.2014.00095. eCollection 2014.
5
Nonlinear dynamic modeling of neuron action potential threshold during synaptically driven broadband intracellular activity.
IEEE Trans Biomed Eng. 2012 Mar;59(3):706-16. doi: 10.1109/TBME.2011.2178241. Epub 2011 Dec 6.

本文引用的文献

2
Nonstationary modeling of neural population dynamics.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4559-62. doi: 10.1109/IEMBS.2009.5332701.
3
Neuroscience. How good are neuron models?
Science. 2009 Oct 16;326(5951):379-80. doi: 10.1126/science.1181936.
4
Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold.
Front Comput Neurosci. 2009 Jul 30;3:9. doi: 10.3389/neuro.10.009.2009. eCollection 2009.
5
Nonlinear modeling of neural population dynamics for hippocampal prostheses.
Neural Netw. 2009 Nov;22(9):1340-51. doi: 10.1016/j.neunet.2009.05.004. Epub 2009 May 22.
6
Tracking temporal evolution of nonlinear dynamics in hippocampus using time-varying volterra kernels.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4996-9. doi: 10.1109/IEMBS.2008.4650336.
7
Modeling glutamatergic synapses: insights into mechanisms regulating synaptic efficacy.
J Integr Neurosci. 2008 Jun;7(2):185-97. doi: 10.1142/s0219635208001770.
8
Nonlinear modeling of causal interrelationships in neuronal ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):336-52. doi: 10.1109/TNSRE.2008.926716.
9
Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: Computational study.
J Comput Neurosci. 2009 Feb;26(1):1-19. doi: 10.1007/s10827-008-0097-3. Epub 2008 May 28.
10
Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.
J Comput Neurosci. 2009 Feb;26(1):21-37. doi: 10.1007/s10827-008-0098-2. Epub 2008 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验