Suppr超能文献

通过自由聆听音乐时的张量成分分析推导电生理脑网络连通性。

Deriving Electrophysiological Brain Network Connectivity via Tensor Component Analysis During Freely Listening to Music.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):409-418. doi: 10.1109/TNSRE.2019.2953971. Epub 2019 Dec 18.

Abstract

Recent studies show that the dynamics of electrophysiological functional connectivity is attracting more and more interest since it is considered as a better representation of functional brain networks than static network analysis. It is believed that the dynamic electrophysiological brain networks with specific frequency modes, transiently form and dissolve to support ongoing cognitive function during continuous task performance. Here, we propose a novel method based on tensor component analysis (TCA), to characterize the spatial, temporal, and spectral signatures of dynamic electrophysiological brain networks in electroencephalography (EEG) data recorded during free music-listening. A three-way tensor containing time-frequency phase-coupling between pairs of parcellated brain regions is constructed. Nonnegative CANDECOMP/PARAFAC (CP) decomposition is then applied to extract three interconnected, low-dimensional descriptions of data including temporal, spectral, and spatial connection factors. Musical features are also extracted from stimuli using acoustic feature extraction. Correlation analysis is then conducted between temporal courses of musical features and TCA components to examine the modulation of brain patterns. We derive several brain networks with distinct spectral modes (described by TCA components) significantly modulated by musical features, including higher-order cognitive, sensorimotor, and auditory networks. The results demonstrate that brain networks during music listening in EEG are well characterized by TCA components, with spatial patterns of oscillatory phase-synchronization in specific spectral modes. The proposed method provides evidence for the time-frequency dynamics of brain networks during free music listening through TCA, which allows us to better understand the reorganization of electrophysiological networks.

摘要

最近的研究表明,电生理功能连接的动态特性越来越受到关注,因为它被认为比静态网络分析更能代表功能大脑网络。人们相信,具有特定频率模式的动态电生理脑网络会暂时形成和溶解,以支持持续任务执行过程中的持续认知功能。在这里,我们提出了一种基于张量成分分析(TCA)的新方法,用于描述在自由音乐聆听过程中记录的脑电图(EEG)数据中动态电生理脑网络的空间、时间和频谱特征。构建了一个包含分区脑区之间时频相位耦合的三向张量。然后应用非负 CANDECOMP/PARAFAC(CP)分解来提取包括时间、光谱和空间连接因子的三个相互关联的低维数据描述。还使用声特征提取从刺激中提取音乐特征。然后进行音乐特征和 TCA 分量的时间过程之间的相关分析,以检查大脑模式的调制。我们得出了几个具有明显调制音乐特征的不同光谱模式(由 TCA 分量描述)的大脑网络,包括更高阶认知、感觉运动和听觉网络。结果表明,TCA 分量很好地描述了 EEG 中音乐聆听时的大脑网络,具有特定光谱模式下的振荡相位同步的空间模式。该方法通过 TCA 为自由音乐聆听期间的脑网络时频动态提供了证据,使我们能够更好地理解电生理网络的重组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验