Suppr超能文献

在心脏机电模拟中实现了高达16384个处理器的强缩放和加速。

Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations.

作者信息

Reumann Matthias, Fitch Blake G, Rayshubskiy Aleksandr, Keller David U J, Seemann Gunnar, Dossel Olaf, Pitman Michael C, Rice John J

机构信息

Computational Biology Center, IBM TJ Watson Research Center, Yorktown Heights, 1101 Kitchawan Road, Route 134, NY 10598, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2795-8. doi: 10.1109/IEMBS.2009.5333802.

Abstract

High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two ventricles and compare them to our previously published results using an electrophysiological model only. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Fiber orientation was included. Data decomposition for the distribution onto the distributed memory system was carried out by orthogonal recursive bisection. Load weight ratios for non-tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100. The ten Tusscher et al. (2004) electrophysiological cell model was used and the Rice et al. (1999) model for the computation of the calcium transient dependent force. Scaling results for 512, 1024, 2048, 4096, 8192 and 16,384 processors were obtained for 1 ms simulation time. The simulations were carried out on an IBM Blue Gene/L supercomputer. The results show linear scaling from 512 to 16,384 processors with speedup factors between 1.82 and 2.14 between partitions. The most optimal load ratio was 1:25 for on all partitions. However, a shift towards load ratios with higher weight for the tissue elements can be recognized as can be expected when adding computational complexity to the model while keeping the same communication setup. This work demonstrates that it is potentially possible to run simulations of 0.5 s using the presented electro-mechanical cardiac model within 1.5 hours.

摘要

在临床环境中,需要高性能计算才能使用具有生物物理详细细胞模型的心脏全器官模型进行可行的模拟。通过模拟电生理和力学模型来增加模型细节会增加计算需求。我们展示了一个双心室机电心脏模型的缩放结果,并将其与我们之前仅使用电生理模型发表的结果进行比较。解剖数据集由可见女性数据集的两个心室以0.2毫米分辨率提供。包括纤维方向。通过正交递归二分法进行数据分解以分布到分布式内存系统上。数据分解中使用的非组织与组织元素的负载权重比为1:1、1:2、1:5、1:10、1:25、1:38.85、1:50和1:100。使用了Ten Tusscher等人(2004年)的电生理细胞模型以及Rice等人(1999年)的模型来计算钙瞬变相关力。在1毫秒模拟时间内获得了512、1024、2048、4096、8192和16384个处理器的缩放结果。模拟在IBM Blue Gene/L超级计算机上进行。结果显示从512个处理器到16384个处理器呈线性缩放,分区之间的加速因子在1.82和2.14之间。所有分区的最优负载比为1:25。然而,可以看出随着向模型中添加计算复杂性同时保持相同的通信设置,负载比朝着组织元素权重更高的方向转变。这项工作表明,使用所提出的机电心脏模型在1.5小时内运行0.5秒的模拟可能是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验