Department of Biomedical Engineering, King's College London, UK.
Int J Numer Method Biomed Eng. 2014 Jan;30(1):117-34. doi: 10.1002/cnm.2593. Epub 2013 Sep 20.
In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of CHeart--a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC.
在本文中,我们研究了使用图形处理单元(GPU)加速弱耦合机电系统。具体来说,我们将基于 CPU 的有限元代码 CHeart 的多个组件移植到 GPU 上,该代码是为模拟多物理问题而开发的。基于计算成本的标准,我们在 GPU 上实现了电生理学问题的 ODE 和 PDE 求解步骤,以及力学问题的雅可比矩阵和残差评估。然后将 GPU 实现的性能与单核 CPU(SC)执行以及具有等效理论性能的多核 CPU(MC)计算进行比较。结果表明,对于人类规模的左心室网格,与 SC 相比,电生理学问题的 GPU 加速提供了 164 倍的加速,与 MC 相比,ODE 模型的求解速度提高了 5.5 倍。对于 PDE 求解,也观察到了与 SC 相比高达 72 倍的加速,与 MC 相比高达 2.6 倍的加速。使用相同的人体几何形状,力学残差/雅可比计算的 GPU 实现提供了与 SC 相比高达 44 倍的加速,与 MC 相比高达 2.0 倍的加速。