Suppr超能文献

迈向基于 GPGPU 的人心机电模拟加速。

Toward GPGPU accelerated human electromechanical cardiac simulations.

机构信息

Department of Biomedical Engineering, King's College London, UK.

出版信息

Int J Numer Method Biomed Eng. 2014 Jan;30(1):117-34. doi: 10.1002/cnm.2593. Epub 2013 Sep 20.

Abstract

In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of CHeart--a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC.

摘要

在本文中,我们研究了使用图形处理单元(GPU)加速弱耦合机电系统。具体来说,我们将基于 CPU 的有限元代码 CHeart 的多个组件移植到 GPU 上,该代码是为模拟多物理问题而开发的。基于计算成本的标准,我们在 GPU 上实现了电生理学问题的 ODE 和 PDE 求解步骤,以及力学问题的雅可比矩阵和残差评估。然后将 GPU 实现的性能与单核 CPU(SC)执行以及具有等效理论性能的多核 CPU(MC)计算进行比较。结果表明,对于人类规模的左心室网格,与 SC 相比,电生理学问题的 GPU 加速提供了 164 倍的加速,与 MC 相比,ODE 模型的求解速度提高了 5.5 倍。对于 PDE 求解,也观察到了与 SC 相比高达 72 倍的加速,与 MC 相比高达 2.6 倍的加速。使用相同的人体几何形状,力学残差/雅可比计算的 GPU 实现提供了与 SC 相比高达 44 倍的加速,与 MC 相比高达 2.0 倍的加速。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f24/4016759/ac529e1cb4df/cnm0030-0117-f1.jpg

相似文献

1
Toward GPGPU accelerated human electromechanical cardiac simulations.
Int J Numer Method Biomed Eng. 2014 Jan;30(1):117-34. doi: 10.1002/cnm.2593. Epub 2013 Sep 20.
3
Simulations of complex and microscopic models of cardiac electrophysiology powered by multi-GPU platforms.
Comput Math Methods Med. 2012;2012:824569. doi: 10.1155/2012/824569. Epub 2012 Nov 25.
4
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.
Comput Math Methods Med. 2015;2015:862735. doi: 10.1155/2015/862735. Epub 2015 Oct 25.
5
Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
Med Phys. 2015 Jun;42(6):2841-52. doi: 10.1118/1.4919742.
6
MIMO Radar Parallel Simulation System Based on CPU/GPU Architecture.
Sensors (Basel). 2022 Jan 5;22(1):396. doi: 10.3390/s22010396.
8
Multi-GPU Jacobian accelerated computing for soft-field tomography.
Physiol Meas. 2012 Oct;33(10):1703-15. doi: 10.1088/0967-3334/33/10/1703. Epub 2012 Sep 26.
9
Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).
J Neurosci Methods. 2015 Jan 15;239:1-10. doi: 10.1016/j.jneumeth.2014.09.022. Epub 2014 Sep 30.
10
Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.
Comput Methods Programs Biomed. 2010 Oct;100(1):87-96. doi: 10.1016/j.cmpb.2010.06.015. Epub 2010 Jul 31.

引用本文的文献

1
Parallelization of Three Dimensional Cardiac Simulation on GPU.
Biomedicines. 2024 Sep 19;12(9):2126. doi: 10.3390/biomedicines12092126.
3
Interpreting Activation Mapping of Atrial Fibrillation: A Hybrid Computational/Physiological Study.
Ann Biomed Eng. 2018 Feb;46(2):257-269. doi: 10.1007/s10439-017-1969-3. Epub 2017 Dec 6.
5
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.
Comput Math Methods Med. 2015;2015:862735. doi: 10.1155/2015/862735. Epub 2015 Oct 25.
6
A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging.
Med Image Anal. 2014 Oct;18(7):1200-16. doi: 10.1016/j.media.2014.07.002. Epub 2014 Jul 18.

本文引用的文献

1
Coupled electromechanical model of the heart: Parallel finite element formulation.
Int J Numer Method Biomed Eng. 2012 Jan;28(1):72-86. doi: 10.1002/cnm.1494.
2
The estimation of patient-specific cardiac diastolic functions from clinical measurements.
Med Image Anal. 2013 Feb;17(2):133-46. doi: 10.1016/j.media.2012.08.001. Epub 2012 Oct 16.
3
Inflow typology and ventricular geometry determine efficiency of filling in the hypoplastic left heart.
Ann Thorac Surg. 2012 Nov;94(5):1562-9. doi: 10.1016/j.athoracsur.2012.05.122. Epub 2012 Aug 2.
4
Accelerating cardiac bidomain simulations using graphics processing units.
IEEE Trans Biomed Eng. 2012 Aug;59(8):2281-90. doi: 10.1109/TBME.2012.2202661. Epub 2012 Jun 5.
5
euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling.
Interface Focus. 2011 Jun 6;1(3):349-64. doi: 10.1098/rsfs.2010.0048. Epub 2011 Apr 1.
6
At the heart of computational modelling.
J Physiol. 2012 Mar 15;590(6):1331-8. doi: 10.1113/jphysiol.2011.225045. Epub 2012 Jan 23.
7
Verification of cardiac tissue electrophysiology simulators using an N-version benchmark.
Philos Trans A Math Phys Eng Sci. 2011 Nov 13;369(1954):4331-51. doi: 10.1098/rsta.2011.0139.
8
Simulating human cardiac electrophysiology on clinical time-scales.
Front Physiol. 2011 Apr 9;2:14. doi: 10.3389/fphys.2011.00014. eCollection 2011.
9
A fully implicit finite element method for bidomain models of cardiac electrophysiology.
Comput Methods Biomech Biomed Engin. 2012;15(6):645-56. doi: 10.1080/10255842.2011.554410. Epub 2011 May 24.
10
Efficient computational methods for strongly coupled cardiac electromechanics.
IEEE Trans Biomed Eng. 2012 May;59(5):1219-28. doi: 10.1109/TBME.2011.2112359. Epub 2011 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验