Suppr超能文献

一种用于嵌入式医疗设备的基于微功率支持向量机的癫痫发作检测架构。

A micropower support vector machine based seizure detection architecture for embedded medical devices.

作者信息

Shoeb Ali, Carlson Dave, Panken Eric, Denison Timothy

机构信息

Massachusetts Institute of Technology, Boston, MA 02139, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4202-5. doi: 10.1109/IEMBS.2009.5333790.

Abstract

Implantable neurostimulators for the treatment of epilepsy that are capable of sensing seizures can enable novel therapeutic applications. However, detecting seizures is challenging due to significant intracranial EEG signal variability across patients. In this paper, we illustrate how a machine-learning based, patient-specific seizure detector provides better performance and lower power consumption than a patient non-specific detector using the same seizure library. The machine-learning based architecture was fully implemented in the micropower domain, demonstrating feasibility for an embedded detector in implantable systems.

摘要

能够感知癫痫发作的用于治疗癫痫的植入式神经刺激器可实现新的治疗应用。然而,由于患者之间颅内脑电图信号存在显著差异,检测癫痫发作具有挑战性。在本文中,我们展示了基于机器学习的、针对特定患者的癫痫发作检测器如何比使用相同癫痫发作库的非特定患者检测器具有更好的性能和更低的功耗。基于机器学习的架构在微功耗领域得到了全面实现,证明了其在植入式系统中作为嵌入式检测器的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验