Raza S, Sharma Yachna, Chaudry Qaiser, Young Andrew N, Wang May D
Georgia Institute of Technology, Atlanta, GA 30332, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6687-90. doi: 10.1109/IEMBS.2009.5334009.
The task of analyzing tissue biopsies performed by a pathologist is challenging and time consuming. It suffers from intra- and inter-user variability. Computer assisted diagnosis (CAD) helps to reduce such variations and speed up the diagnostic process. In this paper, we propose an automatic computer assisted diagnostic system for renal cell carcinoma subtype classification using scale invariant features. We capture the morphological distinctness of various subtypes and we have used them to classify a heterogeneous data set of renal cell carcinoma biopsy images. Our technique does not require color segmentation and minimizes human intervention. We circumvent user subjectivity using automated analysis and cater for intra-class heterogeneities using multiple class templates. We achieve a classification accuracy of 83% using a Bayesian classifier.
病理学家对组织活检进行分析的任务既具有挑战性又耗时。它存在用户内部和用户之间的差异。计算机辅助诊断(CAD)有助于减少此类差异并加快诊断过程。在本文中,我们提出了一种使用尺度不变特征的肾细胞癌亚型分类自动计算机辅助诊断系统。我们捕捉了各种亚型的形态差异,并利用这些差异对肾细胞癌活检图像的异质数据集进行分类。我们的技术不需要颜色分割,并将人工干预降至最低。我们使用自动分析规避用户主观性,并使用多个类别模板来处理类内异质性。我们使用贝叶斯分类器实现了83%的分类准确率。