Raza S Hussain, Parry R Mitchell, Moffitt Richard A, Young Andrew N, Wang May D
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):66-74. doi: 10.1007/978-3-642-23626-6_9.
The bag-of-features method has emerged as a useful and flexible tool that can capture medically relevant image characteristics. In this paper, we study the effect of scale and rotation invariance in the bag-of-features framework for Renal Cell Carcinoma subtype classification. We estimated the performance of different features by linear support vector machine over 10 iterations of 3-fold cross validation. For a very heterogeneous dataset labeled by an expert pathologist, we achieve a classification accuracy of 88% with four subtypes. Our study shows that rotation invariance is more important than scale invariance but combining both properties gives better classification performance.
特征袋方法已成为一种有用且灵活的工具,能够捕捉与医学相关的图像特征。在本文中,我们研究了特征袋框架中尺度和旋转不变性对肾细胞癌亚型分类的影响。我们通过线性支持向量机在3折交叉验证的10次迭代中估计了不同特征的性能。对于由专业病理学家标注的非常异质的数据集,我们对四种亚型实现了88%的分类准确率。我们的研究表明,旋转不变性比尺度不变性更重要,但将两者结合可获得更好的分类性能。