Suppr超能文献

用于组织病理学图像分类的特征袋方法中的尺度和旋转不变性分析。

An analysis of scale and rotation invariance in the bag-of-features method for histopathological image classification.

作者信息

Raza S Hussain, Parry R Mitchell, Moffitt Richard A, Young Andrew N, Wang May D

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 3):66-74. doi: 10.1007/978-3-642-23626-6_9.

Abstract

The bag-of-features method has emerged as a useful and flexible tool that can capture medically relevant image characteristics. In this paper, we study the effect of scale and rotation invariance in the bag-of-features framework for Renal Cell Carcinoma subtype classification. We estimated the performance of different features by linear support vector machine over 10 iterations of 3-fold cross validation. For a very heterogeneous dataset labeled by an expert pathologist, we achieve a classification accuracy of 88% with four subtypes. Our study shows that rotation invariance is more important than scale invariance but combining both properties gives better classification performance.

摘要

特征袋方法已成为一种有用且灵活的工具,能够捕捉与医学相关的图像特征。在本文中,我们研究了特征袋框架中尺度和旋转不变性对肾细胞癌亚型分类的影响。我们通过线性支持向量机在3折交叉验证的10次迭代中估计了不同特征的性能。对于由专业病理学家标注的非常异质的数据集,我们对四种亚型实现了88%的分类准确率。我们的研究表明,旋转不变性比尺度不变性更重要,但将两者结合可获得更好的分类性能。

相似文献

6
MRI of the kidney-state of the art.肾脏的磁共振成像——最新技术
Eur Radiol. 2007 Nov;17(11):2780-93. doi: 10.1007/s00330-007-0701-3. Epub 2007 Jul 24.
7
Tumor segmentation with multi-modality image in Conditional Random Field framework with logistic regression models.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6450-4. doi: 10.1109/EMBC.2014.6945105.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验