Suppr超能文献

基于深度学习的肾周细胞癌组织病理学图像分类与生存预测。

Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning.

机构信息

Center for Visual Information Technology, IIIT, Hyderabad, India.

Center for Computational Natural Sciences and Bioinformatics, IIIT Hyderabad, Hyderabad, India.

出版信息

Sci Rep. 2019 Jul 19;9(1):10509. doi: 10.1038/s41598-019-46718-3.

Abstract

Histopathological images contain morphological markers of disease progression that have diagnostic and predictive values. In this study, we demonstrate how deep learning framework can be used for an automatic classification of Renal Cell Carcinoma (RCC) subtypes, and for identification of features that predict survival outcome from digital histopathological images. Convolutional neural networks (CNN's) trained on whole-slide images distinguish clear cell and chromophobe RCC from normal tissue with a classification accuracy of 93.39% and 87.34%, respectively. Further, a CNN trained to distinguish clear cell, chromophobe and papillary RCC achieves a classification accuracy of 94.07%. Here, we introduced a novel support vector machine-based method that helped to break the multi-class classification task into multiple binary classification tasks which not only improved the performance of the model but also helped to deal with data imbalance. Finally, we extracted the morphological features from high probability tumor regions identified by the CNN to predict patient survival outcome of most common clear cell RCC. The generated risk index based on both tumor shape and nuclei features are significantly associated with patient survival outcome. These results highlight that deep learning can play a role in both cancer diagnosis and prognosis.

摘要

组织病理学图像包含疾病进展的形态学标志物,具有诊断和预测价值。在这项研究中,我们展示了如何使用深度学习框架对肾细胞癌 (RCC) 亚型进行自动分类,并确定从数字组织病理学图像预测生存结果的特征。在全切片图像上训练的卷积神经网络 (CNN) 可以分别将透明细胞和嫌色细胞 RCC 与正常组织区分开来,分类准确率分别为 93.39%和 87.34%。此外,一个经过训练可以区分透明细胞、嫌色细胞和乳头状 RCC 的 CNN 实现了 94.07%的分类准确率。在这里,我们引入了一种新的基于支持向量机的方法,该方法有助于将多类分类任务分解为多个二分类任务,这不仅提高了模型的性能,还有助于处理数据不平衡问题。最后,我们从 CNN 识别的高概率肿瘤区域提取形态特征,预测最常见的透明细胞 RCC 患者的生存结果。基于肿瘤形状和核特征生成的风险指数与患者的生存结果显著相关。这些结果表明,深度学习可以在癌症诊断和预后中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验