Suppr超能文献

一种基于裂隙灯图像的核性白内障自动诊断系统。

An automatic diagnosis system of nuclear cataract using slit-lamp images.

作者信息

Li Huiqi, Lim Joo Hwee, Liu Jiang, Wong Damon Wing Kee, Tan Ngan Meng, Lu Shijian, Zhang Zhuo, Wong Tien Yin

机构信息

Institute for Infocomm Research, A*STAR, Connexis, Singapore.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3693-6. doi: 10.1109/IEMBS.2009.5334735.

Abstract

An automatic diagnosis system of nuclear cataract is presented in this paper. Nuclear cataract is graded according to the severity of opacity using slit-lamp lens images. Anatomical structure in the lens image is detected using a modified active shape model (ASM). Based on the anatomical landmark, local features are extracted according to clinical grading protocol. Support vector machine (SVM) regression is employed to train a grading model for grade prediction. The system is tested using clinical images and clinical ground truth. More than five thousands slit-lamp images were tested. The success rate of feature extraction is 95% and the mean grading difference is 0.36. The automatic diagnosis system can help to improve the grading objectivity and save the workload of ophthalmologists.

摘要

本文提出了一种核性白内障自动诊断系统。利用裂隙灯晶状体图像,根据混浊程度对核性白内障进行分级。使用改进的主动形状模型(ASM)检测晶状体图像中的解剖结构。基于解剖标志点,根据临床分级方案提取局部特征。采用支持向量机(SVM)回归训练分级模型进行分级预测。使用临床图像和临床真值对该系统进行测试。测试了五千多张裂隙灯图像。特征提取成功率为95%,平均分级差异为0.36。该自动诊断系统有助于提高分级的客观性,减轻眼科医生的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验