Suppr超能文献

使用图像梯度的自动核性白内障分级

Automatic nuclear cataract grading using image gradients.

作者信息

Srivastava Ruchir, Gao Xinting, Yin Fengshou, Wong Damon W K, Liu Jiang, Cheung Carol Y, Wong Tien Yin

机构信息

Institute for Infocomm Research , 138632 Singapore.

Singapore Eye Research Institute , Singapore 168751, Singapore.

出版信息

J Med Imaging (Bellingham). 2014 Apr;1(1):014502. doi: 10.1117/1.JMI.1.1.014502. Epub 2014 Jun 4.

Abstract

This paper deals with automatic grading of nuclear cataract (NC) from slit-lamp images in order to reduce the efforts in traditional manual grading. Existing works on this topic have mostly used brightness and color of the eye lens for the task but not the visibility of lens parts. The main contribution of this paper is in utilizing the visibility cue by proposing gray level image gradient-based features for automatic grading of NC. Gradients are important for the task because in a healthy eye, clear visibility of lens parts leads to distinct edges in the lens region, but these edges fade as severity of cataract increases. Experiments performed on a large dataset of over 5000 slit-lamp images reveal that the proposed features perform better than the state-of-the-art features in terms of both speed and accuracy. Moreover, fusion of the proposed features with the prior ones gives results better than any of the two used alone.

摘要

本文旨在通过裂隙灯图像对核性白内障(NC)进行自动分级,以减少传统手动分级的工作量。关于该主题的现有工作大多使用晶状体的亮度和颜色来完成任务,而未考虑晶状体各部分的可见性。本文的主要贡献在于通过提出基于灰度图像梯度的特征来利用可见性线索,以实现核性白内障的自动分级。梯度对于该任务很重要,因为在健康眼睛中,晶状体各部分的清晰可见性会导致晶状体区域出现明显的边缘,但随着白内障严重程度的增加,这些边缘会逐渐模糊。在一个包含5000多张裂隙灯图像的大型数据集上进行的实验表明,所提出的特征在速度和准确性方面均优于现有最佳特征。此外,将所提出的特征与先前的特征进行融合,其结果比单独使用这两种特征中的任何一种都要好。

相似文献

1
Automatic nuclear cataract grading using image gradients.
J Med Imaging (Bellingham). 2014 Apr;1(1):014502. doi: 10.1117/1.JMI.1.1.014502. Epub 2014 Jun 4.
2
An automatic diagnosis system of nuclear cataract using slit-lamp images.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3693-6. doi: 10.1109/IEMBS.2009.5334735.
3
Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):468-75. doi: 10.1007/978-3-642-40763-5_58.
4
Grading nuclear cataract: reproducibility and validity of a new method.
Br J Ophthalmol. 1999 Oct;83(10):1159-63. doi: 10.1136/bjo.83.10.1159.
5
Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning.
IEEE Trans Biomed Eng. 2015 Nov;62(11):2693-701. doi: 10.1109/TBME.2015.2444389. Epub 2015 Jun 11.
6
Towards automatic grading of nuclear cataract.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4961-4. doi: 10.1109/IEMBS.2007.4353454.
7
A computer assisted method for nuclear cataract grading from slit-lamp images using ranking.
IEEE Trans Med Imaging. 2011 Jan;30(1):94-107. doi: 10.1109/TMI.2010.2062197. Epub 2010 Jul 29.
8
A computer-aided diagnosis system of nuclear cataract.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1690-8. doi: 10.1109/TBME.2010.2041454. Epub 2010 Feb 17.
9
The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group.
Arch Ophthalmol. 1993 Jun;111(6):831-6. doi: 10.1001/archopht.1993.01090060119035.

引用本文的文献

1
Everything real about unreal artificial intelligence in diabetic retinopathy and in ocular pathologies.
World J Diabetes. 2022 Oct 15;13(10):822-834. doi: 10.4239/wjd.v13.i10.822.
2
Development of portable and robust cataract detection and grading system by analyzing multiple texture features for Tele-Ophthalmology.
Multimed Tools Appl. 2022;81(16):23355-23371. doi: 10.1007/s11042-022-12544-5. Epub 2022 Mar 18.
3
ACCV: automatic classification algorithm of cataract video based on deep learning.
Biomed Eng Online. 2021 Aug 5;20(1):78. doi: 10.1186/s12938-021-00906-3.

本文引用的文献

1
Global estimates of visual impairment: 2010.
Br J Ophthalmol. 2012 May;96(5):614-8. doi: 10.1136/bjophthalmol-2011-300539. Epub 2011 Dec 1.
2
A computer assisted method for nuclear cataract grading from slit-lamp images using ranking.
IEEE Trans Med Imaging. 2011 Jan;30(1):94-107. doi: 10.1109/TMI.2010.2062197. Epub 2010 Jul 29.
3
A computer-aided diagnosis system of nuclear cataract.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1690-8. doi: 10.1109/TBME.2010.2041454. Epub 2010 Feb 17.
4
An automatic diagnosis system of nuclear cataract using slit-lamp images.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3693-6. doi: 10.1109/IEMBS.2009.5334735.
5
Prevalence and causes of low vision and blindness in an urban malay population: the Singapore Malay Eye Study.
Arch Ophthalmol. 2008 Aug;126(8):1091-9. doi: 10.1001/archopht.126.8.1091.
6
Towards automatic grading of nuclear cataract.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4961-4. doi: 10.1109/IEMBS.2007.4353454.
8
Performance evaluation of local descriptors.
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1615-30. doi: 10.1109/TPAMI.2005.188.
9
Age-related cataract.
Lancet. 2005;365(9459):599-609. doi: 10.1016/S0140-6736(05)17911-2.
10
New objective classification system for nuclear opacification.
J Opt Soc Am A Opt Image Sci Vis. 1997 Jun;14(6):1197-204. doi: 10.1364/josaa.14.001197.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验