Suppr超能文献

前生物代谢:还原三羧酸循环中矿物光电化学产生的α-酮羧酸。

Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle.

机构信息

School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Astrobiology. 2009 Nov;9(9):833-42. doi: 10.1089/ast.2009.0356.

Abstract

A reductive tricarboxylic acid (rTCA) cycle could have fixed carbon dioxide as biochemically useful energy-storage molecules on early Earth. Nonenzymatic chemical pathways for some steps of the rTCA cycle, however, such as the production of the alpha-ketocarboxylic acids pyruvate and alpha-ketoglutarate, remain a challenging problem for the viability of the proposed prebiotic cycle. As a class of compounds, alpha-ketocarboxylic acids have high free energies of formation that disfavor their production. We report herein the production of pyruvate from lactate and of alpha-ketoglutarate from pyruvate in the millimolar concentration range as promoted by ZnS mineral photoelectrochemistry. Pyruvate is produced from the photooxidation of lactate with 70% yield and a quantum efficiency of 0.009 at 15 degrees C across the wavelength range of 200-400 nm. The produced pyruvate undergoes photoreductive back reaction to lactate at a 30% yield and with a quantum efficiency of 0.0024. Pyruvate alternatively continues in photooxidative forward reaction to alpha-ketoglutarate with a 50% yield and a quantum efficiency of 0.0036. The remaining 20% of the carbon follows side reactions that produce isocitrate, glutarate, and succinate. Small amounts of acetate are also produced. The results of this study suggest that alpha-ketocarboxylic acids produced by mineral photoelectrochemistry could have participated in a viable enzyme-free cycle for carbon fixation in an environment where light, sulfide minerals, carbon dioxide, and other organic compounds interacted on prebiotic Earth.

摘要

还原性三羧酸 (rTCA) 循环可以将二氧化碳固定为生物化学上有用的储能分子,这在早期地球上是可能的。然而,rTCA 循环的一些步骤的非酶化学途径,例如丙酮酸和α-酮戊二酸的产生,仍然是提议的前生物循环可行性的一个具有挑战性的问题。作为一类化合物,α-酮羧酸具有较高的生成自由能,不利于其产生。我们在此报告了 ZnS 矿物光电化学在毫摩尔浓度范围内促进的丙酮酸从乳酸和α-酮戊二酸从丙酮酸的产生。丙酮酸是通过乳酸的光氧化产生的,在 15 摄氏度下,在 200-400nm 的波长范围内,产率为 70%,量子效率为 0.009。产生的丙酮酸在 30%的产率和 0.0024 的量子效率下经历光还原的反向反应回到乳酸。丙酮酸替代地以 50%的产率和 0.0036 的量子效率继续进行光氧化正向反应生成α-酮戊二酸。剩余的 20%的碳遵循产生异柠檬酸、戊二酸和琥珀酸的副反应。也产生少量的乙酸盐。本研究的结果表明,矿物光电化学产生的α-酮羧酸可能参与了在光、硫化物矿物、二氧化碳和其他有机化合物在原始地球上相互作用的环境中,无酶的可行碳固定循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验