Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard St., Baltimore, MD 21201, USA.
Bioelectrochemistry. 2010 Aug;79(1):50-6. doi: 10.1016/j.bioelechem.2009.11.001. Epub 2009 Nov 20.
Sun-powered or photosynthetic microbial fuel cells (PMFCs) offer a novel approach for producing electrical power in a CO(2)-free self-sustainable manner in the absence of organic fuel. Recent discovery that cyanobacteria display electrogenic activity under illumination emphasized the need to develop improved anode materials capable of harvesting electrons directly from photosynthetic cultures. Here, we showed that nanostructured electrically conductive polymer polypyrrole substantially improved the efficiency of electron collection from photosynthetic biofilm in PMFCs. Nanostructured fibrillar polypyrrole showed better performance than granular polypyrrole. Cyclic voltammetry and impedance spectroscopy analyses revealed that better performance of nanostructured anode materials was due to the substantial improvement in electrochemical properties including higher redox current and lower interface electron-transfer resistance. At loading density of 3mg/cm(2), coating of anode with fibrillar polypyrrole resulted in a 450% increase in the power density compared to those reported in our previous studies on PMFCs that used the same photosynthetic culture.
基于阳光或光合作用的微生物燃料电池(PMFCs)为在无有机燃料的情况下以 CO2 自由自维持的方式产生电力提供了一种新方法。最近的发现表明,在光照下蓝藻表现出发电活性,这强调了需要开发能够直接从光合培养物中收集电子的改良阳极材料。在这里,我们表明,纳米结构的导电聚合物聚吡咯大大提高了 PMFC 中光合生物膜中电子收集的效率。纳米结构的纤维状聚吡咯比颗粒状聚吡咯表现出更好的性能。循环伏安法和阻抗谱分析表明,纳米结构阳极材料性能的提高主要归因于电化学性能的显著改善,包括更高的氧化还原电流和更低的界面电子转移电阻。在 3mg/cm2 的负载密度下,与我们之前在使用相同光合培养物的 PMFC 研究中报道的相比,纤维状聚吡咯对阳极的涂层使功率密度增加了 450%。