Nox4 和 Nox2 的结构见解:涉及功能和细胞定位的基序。
Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization.
机构信息
Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
出版信息
Mol Cell Biol. 2010 Feb;30(4):961-75. doi: 10.1128/MCB.01393-09. Epub 2009 Dec 7.
Regulated generation of reactive oxygen species (ROS) is primarily accomplished by NADPH oxidases (Nox). Nox1 to Nox4 form a membrane-associated heterodimer with p22(phox), creating the docking site for assembly of the activated oxidase. Signaling specificity is achieved by interaction with a complex network of cytosolic components. Nox4, an oxidase linked to cardiovascular disease, carcinogenesis, and pulmonary fibrosis, deviates from this model by displaying constitutive H(2)O(2) production without requiring known regulators. Extensive Nox4/Nox2 chimera screening was initiated to pinpoint structural motifs essential for ROS generation and Nox subcellular localization. In summary, a matching B loop was crucial for catalytic activity of both Nox enzymes. Substitution of the carboxyl terminus was sufficient for converting Nox4 into a phorbol myristate acetate (PMA)-inducible phenotype, while Nox2-based chimeras never gained constitutive activity. Changing the Nox2 but not the Nox4 amino terminus abolished ROS generation. The unique heterodimerization of a functional Nox4/p22(phox) Y121H complex was dependent on the D loop. Nox4, Nox2, and functional Nox chimeras translocated to the plasma membrane. Cell surface localization of Nox4 or PMA-inducible Nox4 did not correlate with O(2)(-) generation. In contrast, Nox4 released H(2)O(2) and promoted cell migration. Our work provides insights into Nox structure, regulation, and ROS output that will aid inhibitor design.
活性氧(ROS)的调节产生主要是通过 NADPH 氧化酶(Nox)完成的。Nox1 到 Nox4 与 p22(phox)形成膜相关的异二聚体,为激活的氧化酶组装创造了对接位点。通过与复杂的细胞溶质成分网络相互作用来实现信号特异性。Nox4 是一种与心血管疾病、致癌作用和肺纤维化相关的氧化酶,它通过不需要已知调节剂的情况下持续产生 H2O2 而偏离了这种模式。已经启动了广泛的 Nox4/Nox2 嵌合体筛选,以确定对 ROS 产生和 Nox 亚细胞定位至关重要的结构基序。总之,匹配的 B 环对于两种 Nox 酶的催化活性都是至关重要的。羧基末端的取代足以将 Nox4 转化为佛波酯(PMA)诱导的表型,而基于 Nox2 的嵌合体从未获得组成型活性。改变 Nox2 而不是 Nox4 的氨基末端可消除 ROS 的产生。功能性 Nox4/p22(phox)Y121H 复合物的独特异二聚化依赖于 D 环。Nox4、Nox2 和功能性 Nox 嵌合体都转移到质膜。Nox4 或 PMA 诱导的 Nox4 的细胞表面定位与 O2(-)生成不相关。相比之下,Nox4 释放 H2O2 并促进细胞迁移。我们的工作为 Nox 的结构、调节和 ROS 输出提供了深入的了解,这将有助于抑制剂的设计。