Petersen Steen Vang, Poulsen Nanna Bach, Linneberg Matthiesen Cecilie, Vilhardt Frederik
Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
Department of Cellular and Molecular Medicine, Copenhagen University, 2200 Copenhagen, Denmark.
Antioxidants (Basel). 2021 Jan 25;10(2):172. doi: 10.3390/antiox10020172.
Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.
巨噬细胞及相关组织巨噬细胞群体利用经典的NADPH氧化酶(NOX2)来调节超氧化物和衍生氧化剂的产生,以对抗病原体并进行氧化还原信号传导。重点围绕巨噬细胞,我们讨论了分选进入分泌性储存囊泡、激动剂响应性膜运输以及分隔到富含鞘脂和胆固醇的微结构域(脂筏)如何决定NOX2和超氧化物歧化酶-3(SOD3)的亚细胞分布和空间组织。我们讨论了巨噬细胞的炎症激活如何部分通过小GTP酶Rab27A/B对分泌区室的调节,介导这两种蛋白质在细胞表面的聚结,从而产生局部的过氧化氢输出。与膜嵌入的氧化剂转运蛋白和氧化还原敏感靶蛋白相互作用,这种排列允许自分泌和旁分泌信号传导,从而控制巨噬细胞的激活状态和转录程序。通过讨论自分泌和旁分泌氧化还原信号传导的例子,我们强调了为什么高效的氧化还原信号传导需要形成时空微环境,在其中产生的超氧化物迅速转化为过氧化氢并立即传递以到达附近的氧化还原靶标。最后,我们讨论了最近发现巨噬细胞衍生的外泌体作为NOX2全酶输出到其他细胞的载体。