Suppr超能文献

热球菌同型柠檬酸合酶的底物识别机制及反馈抑制的研究。

Mechanism of substrate recognition and insight into feedback inhibition of homocitrate synthase from Thermus thermophilus.

机构信息

From the Biotechnology Research Center, University of Tokyo, Tokyo 113-8657 and.

From the Biotechnology Research Center, University of Tokyo, Tokyo 113-8657 and; the RIKEN SPring-8 Center, Hyogo 679-5148, Japan.

出版信息

J Biol Chem. 2010 Feb 5;285(6):4195-4205. doi: 10.1074/jbc.M109.086330. Epub 2009 Dec 7.

Abstract

Homocitrate synthase (HCS) catalyzes aldol-type condensation of acetyl coenzyme A (acetyl-CoA) and alpha-ketoglutarate (alpha-KG) to synthesize homocitrate (HC), which is the first and committed step in the lysine biosynthetic pathway through alpha-aminoadipate. As known in most enzymes catalyzing the first reactions in amino acid biosynthetic pathways, HCS is regulated via feedback inhibition by the end product, lysine. Here, we determined the crystal structures of HCS from Thermus thermophilus complexed with alpha-KG, HC, or lysine. In the HC complex, the C1-carboxyl group of HC, which is derived from acetyl-CoA, is hydrogen-bonded with His-292* from another subunit (indicated by the asterisk), indicating direct involvement of this residue in the catalytic mechanism of HCS. The crystal structure of HCS complexed with lysine showed that lysine is bound to the active site with rearrangement of amino acid residues in the substrate-binding site, which accounts for the competitive inhibition by lysine with alpha-KG. Comparison between the structures suggests that His-72, which is conserved in lysine-sensitive HCSs and binds the C5-carboxyl group of alpha-KG, serves as a switch for the conformational change. Replacement of His-72 by leucine made HCS resistant to lysine inhibition, demonstrating the regulatory role of this conserved residue.

摘要

同型柠檬酸合酶(HCS)催化乙酰辅酶 A(乙酰-CoA)和α-酮戊二酸(α-KG)的醛醇型缩合反应,合成同型柠檬酸(HC),这是赖氨酸生物合成途径中通过α-氨基己二酸的第一步和关键步骤。正如大多数催化氨基酸生物合成途径中第一个反应的酶一样,HCS 通过终产物赖氨酸的反馈抑制进行调节。在这里,我们确定了来自嗜热栖热菌的 HCS 与α-KG、HC 或赖氨酸复合物的晶体结构。在 HC 复合物中,HC 的 C1-羧基基团(源自乙酰-CoA)与来自另一个亚基的 His-292*形成氢键(由星号表示),表明该残基直接参与 HCS 的催化机制。与赖氨酸结合的 HCS 晶体结构表明,赖氨酸与活性位点结合,底物结合位点中的氨基酸残基发生重排,这解释了赖氨酸与α-KG 的竞争性抑制。结构比较表明,在赖氨酸敏感的 HCS 中保守并结合α-KG 的 C5-羧基的 His-72 作为构象变化的开关。用亮氨酸取代 His-72 使 HCS 对赖氨酸抑制不敏感,证明了这个保守残基的调节作用。

相似文献

1
Mechanism of substrate recognition and insight into feedback inhibition of homocitrate synthase from Thermus thermophilus.
J Biol Chem. 2010 Feb 5;285(6):4195-4205. doi: 10.1074/jbc.M109.086330. Epub 2009 Dec 7.
3
Characterization of bacterial homocitrate synthase involved in lysine biosynthesis.
FEBS Lett. 2002 Jul 3;522(1-3):35-40. doi: 10.1016/s0014-5793(02)02877-6.
4
Structural basis for L-lysine feedback inhibition of homocitrate synthase.
J Biol Chem. 2010 Apr 2;285(14):10446-53. doi: 10.1074/jbc.M109.094383. Epub 2010 Jan 19.
7
High-Level Production of Lysine in the Yeast Saccharomyces cerevisiae by Rational Design of Homocitrate Synthase.
Appl Environ Microbiol. 2021 Jul 13;87(15):e0060021. doi: 10.1128/AEM.00600-21.
8
Kinetic and chemical mechanisms of homocitrate synthase from Thermus thermophilus.
J Biol Chem. 2011 Aug 19;286(33):29428-29439. doi: 10.1074/jbc.M111.246355. Epub 2011 Jul 6.
9
Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae.
Biochemistry. 2006 Oct 3;45(39):12136-43. doi: 10.1021/bi060889h.

引用本文的文献

1
Characterization of HphA: The First Enzyme in the Homologation Pathway of l-Phenylalanine and l-Tyrosine.
Chembiochem. 2024 Aug 19;25(16):e202400369. doi: 10.1002/cbic.202400369. Epub 2024 Aug 2.
3
Glucosinolate biosynthesis: role of MAM synthase and its perspectives.
Biosci Rep. 2021 Oct 29;41(10). doi: 10.1042/BSR20211634.
4
High-Level Production of Lysine in the Yeast Saccharomyces cerevisiae by Rational Design of Homocitrate Synthase.
Appl Environ Microbiol. 2021 Jul 13;87(15):e0060021. doi: 10.1128/AEM.00600-21.
5
The Spectroscopy of Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5005-5081. doi: 10.1021/acs.chemrev.9b00650. Epub 2020 Apr 2.
6
New Therapeutic Candidates for the Treatment of Malassezia pachydermatis -Associated Infections.
Sci Rep. 2020 Mar 17;10(1):4860. doi: 10.1038/s41598-020-61729-1.
8
Molecular Basis of the Evolution of Methylthioalkylmalate Synthase and the Diversity of Methionine-Derived Glucosinolates.
Plant Cell. 2019 Jul;31(7):1633-1647. doi: 10.1105/tpc.19.00046. Epub 2019 Apr 25.
10
Two ATP-binding cassette transporters involved in (S)-2-aminoethyl-cysteine uptake in thermus thermophilus.
J Bacteriol. 2013 Sep;195(17):3845-53. doi: 10.1128/JB.00202-13. Epub 2013 Jun 21.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus.
Nat Chem Biol. 2009 Sep;5(9):673-9. doi: 10.1038/nchembio.198. Epub 2009 Jul 20.
6
Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
Biochemistry. 2008 Jul 1;47(26):6851-8. doi: 10.1021/bi800087k. Epub 2008 Jun 6.
8
The alpha-aminoadipate pathway for lysine biosynthesis in fungi.
Cell Biochem Biophys. 2006;46(1):43-64. doi: 10.1385/CBB:46:1:43.
9
Kinetic and chemical mechanism of alpha-isopropylmalate synthase from Mycobacterium tuberculosis.
Biochemistry. 2006 Jul 25;45(29):8988-99. doi: 10.1021/bi0606602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验