Department of Biostatistics, Columbia University, Mailman School of Public Health, 722 W. 168th St., 6th floor, New York, NY 10032, USA.
J Cereb Blood Flow Metab. 2010 Apr;30(4):816-26. doi: 10.1038/jcbfm.2009.245. Epub 2009 Dec 9.
In neuroreceptor mapping, methods for the estimation of distribution volume require determination of a metabolite-corrected arterial input function. In application, this may be accomplished by collecting arterial blood samples during scanning, adjusting these measurements according to a separate metabolite analysis, and then modeling the resulting concentration data. Although many groups do this routinely, it is invasive and requires considerable effort. Furthermore, both the plasma and the metabolite data are noisy, and thus estimation of kinetic parameters can be affected by this variability. One promising alternative to full-input function modeling is the simultaneous estimation (SIME) approach, in which kinetic parameters and common input function parameters are estimated using results obtained from several regions at once. We investigate the performance of this approach on data from four different radioligands, using various kinetic models, comparing the results with those obtained by estimation using full-input function modeling. Results indicate that SIME provides a promising alternative for all the radioligands considered.
在神经受体映射中,分布容积估计方法需要确定代谢物校正的动脉输入函数。在应用中,这可以通过在扫描期间采集动脉血样来完成,根据单独的代谢物分析调整这些测量值,然后对得到的浓度数据进行建模。尽管许多小组都这样做,但这是侵入性的,需要大量的努力。此外,血浆和代谢物数据都存在噪声,因此动力学参数的估计可能会受到这种可变性的影响。替代完整输入函数建模的一种很有前途的方法是同时估计 (SIME) 方法,其中使用从几个区域同时获得的结果来估计动力学参数和常见的输入函数参数。我们使用不同的动力学模型,在来自四种不同放射性配体的数据上研究了这种方法的性能,将结果与使用完整输入函数建模进行估计的结果进行比较。结果表明,SIME 为所有考虑的放射性配体提供了一种很有前途的替代方法。