Suppr超能文献

线粒体和质体异质体在中的分拣非常迅速,依赖于 MSH1 活性。

Sorting of mitochondrial and plastid heteroplasmy in is extremely rapid and depends on MSH1 activity.

机构信息

Department of Biology, Colorado State University, Fort Collins, CO 80523.

Department of Mathematics, University of Bergen, Bergen, 5007, Norway.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206973119. doi: 10.1073/pnas.2206973119. Epub 2022 Aug 15.

Abstract

The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of (), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in . We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes () for plastids and mitochondria were ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria ( ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.

摘要

新的线粒体和质体突变的命运取决于它们在细胞内众多细胞器基因组拷贝中持续存在和传播的能力(异质性)。在植物中,异质性在多大程度上通过遗传瓶颈在世代间传递或消除尚不完全清楚,部分原因是它们的低突变率使这些变体如此罕见。破坏参与植物细胞器 DNA 修复的基因 () 会导致许多新的点突变,我们利用这些突变来定量跟踪线粒体和质体基因组中单核苷酸变体在 中的遗传。我们发现,两个细胞器的异质性分选(变体的固定或丢失)都非常迅速,大大超过了在动物中观察到的速率。在 突变体中,质体变体的分选速度快于线粒体变体,通常在单个世代内固定或丢失。质体和线粒体的有效传递瓶颈大小 () 分别约为 1 和 4。恢复 MSH1 功能进一步增加了线粒体中异质性分选的速度(约 1.3),这可能是因为其在促进作为 DNA 修复机制的基因转换方面的假设作用,这有望使细胞内的基因组拷贝均匀化。异质性分选也有利于 GC 碱基对。因此,植物细胞器基因组中的重组修复和基因转换可能会加速异质性的消除,并影响这一分选过程的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5863/9407294/18420b5d420b/pnas.2206973119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验